Please wait a minute...
金属学报  2011, Vol. 47 Issue (12): 1591-1599    DOI: 10.3724/SP.J.1037.2011.00523
  论文 本期目录 | 过刊浏览 |
GH738高温合金热变形过程显微组织控制与预测 II.组织演化模型验证与应用
姚志浩,王秋雨,张麦仓,董建新
北京科技大学材料科学与工程学院, 北京 100083
MICROSTRUCTURE CONTROL AND PREDICTION OF GH738 SUPERALLOY DURING HOT DEFORMATION
II. Verification and Application of Microstructural Evolution Model
YAO Zhihao, WANG Qiuyu, ZHANG Maicang, DONG Jianxin
School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083
引用本文:

姚志浩 王秋雨 张麦仓 董建新. GH738高温合金热变形过程显微组织控制与预测 II.组织演化模型验证与应用[J]. 金属学报, 2011, 47(12): 1591-1599.
, , , . MICROSTRUCTURE CONTROL AND PREDICTION OF GH738 SUPERALLOY DURING HOT DEFORMATION
II. Verification and Application of Microstructural Evolution Model[J]. Acta Metall Sin, 2011, 47(12): 1591-1599.

全文: PDF(1836 KB)  
摘要: 针对所构建的GH738高温合金热变形过程动态再结晶、亚动态(静态)再结晶和晶粒长大的晶粒组织演化模型, 利用FORTRAN语言将锻造变形过程中所有模型写入有限元软件MSC.SUPERFORM的用户子程序中, 对软件进行二次开发并对该高温合金晶粒组织演化进行数值模拟. 通过对Gleeble热压缩试样及直径250 mm涡轮盘实际锻造结果与数值模拟进行对比分析,证实了GH738高温合金显微组织演化模型的正确性和该软件二次开发的可行性.对直径1250 mm超大型涡轮盘生产进行模拟预测, 模拟结果显示适宜的热加工条件为变形温度1040-1100 ℃, 锻造速度10-25 mm/s; 同时与实际在变形温度1080 ℃, 变形速度10 mm/s条件下锻造的直径1250 mm超大型涡轮盘组织进行比较, 发现该模拟结果与实际结果吻合 性较好, 基本达到了组织的精确预测控制. 此外, 结合以上锻造及模拟经验, 对国内GH738高温合金直径1400 mm特大型涡轮盘进行了锻造组织预测.
关键词 GH738镍基变形高温合金 涡轮盘 二次开发 显微组织演化 数值模拟    
Abstract:Microstructure evolution models of dynamic recrystallization, meta–dynamic recrystallization, static recrystallization and grain growth behavior for GH738 superalloy were implanted into finite element software MSC. SUPERFORM with FORTRAN language by means of the user subroutines, in order to add the function of predicting microstructure evolution during hot forging to MSC. SUPERFORM. Microstructure evolution models of GH738 superalloy and the feasibility of the redeveloped MSC.SUPERFORM were verified by comparison between the simulated and experimental results on hot compression specimens and dia.250 mm turbine disc. The numerical simulation of the dia.1250 mm turbine disc forging was carried out by the redeveloped MSC.SUPERFORM, showing that hot working window was in temperature range of 1040—1100  ℃, strain rate range of 10—25 mm/s. Comparison between simulated and actual forging results in the condition of 1080  ℃, 10 mm/s showed that the simulated microstructure was in good agreement with the actual result. Besides, the numerical simulation of the dia.1400 mm turbine disk forging was also carried out by the redeveloped MSC.SUPERFORM. Therefore, the construction of microstructure evolution models of GH738 superalloy and the feasibility of the redeveloped MSC.SUPERFORM are of great significance to accurate control and prediction of turbine disc microstructure.
Key wordsGH738 wrought nickel base superalloy    turbine disc    secondary development    microstructure evolution    numerical simulation
收稿日期: 2011-08-11     
基金资助:

国家自然科学基金资助项目 51071017

作者简介: 姚志浩, 男, 满族, 1982生, 博士生
[1] Kermanpur A, Tin S, Lee P D, Mclean M. JOM, 2004; 56:72

[2] Tabb T P, Kantzos P T, Telesman J, Gayda J, Sudbrack C K, Palsa B. Acta Mater, 2011; 33: 414

[3] Shi C X, Zhong Z Y. Acta Metall Sin, 2010; 46: 1281

(师昌绪, 仲增墉. 金属学报, 2010; 46: 1281)

[4] Guimaraes A A, Jonas J J. Metall Trans, 1981; A12: 1655

[5] Weaver D S, Semiatin S L. Scr Mater, 2007; 57: 1044

[6] Sellars C M, Whiteman J A. Mater Sci, 1979; 3: 187

[7] Feng J P, Luo Z J. J Mater Process Technol, 2000; 108: 40

[8] Sellars C M. Mater Sci Technol, 1985; 1: 325

[9] Hu Z M, Brooks JW, Dean T A. J Mater Process Technol, 1999; 88: 251

[10] Kopp R. Electrochem Acta, 1991; 20: 351

[11] Shen G S, Furrer D. J Mate Process Technol, 2000; 98: 189

[12] GAO Z Y, Grandhi R V. Int J Machine Tools Manuf, 2000; 40: 691

[13] Yeom J T, Lee C S, Kim J H, Park N K. Mater Sci Eng, 2007; A449: 722

[14] Na Y S, Yeom J T, Park N K, Lee J Y. J Mater Process Technol, 2003; 141: 337

[15] Medeiros S C, Prasad Y V R K, Frazier W G, Srinivasan R. Scr Mater, 2000; 42: 17

[16] Guan R G, Zhang Q S, Dai C G, Zhao Z Y, Liu C M. Acta Metall Sin, 2011; 47: 1167

(管仁国, 张秋生, 戴春光, 赵占勇, 刘春明. 金属学报, 2011; 47: 1167)

[17] Wan Z Y, Yu W, Yang R. Chin J Nonferrous Met. 2010;20: s775

(万自永, 余巍, 杨瑞. 中国有色金属学报, 2010; 20: s775)

[18] Oh S I, Wu W T, Tang J P. J Mater Process Technol, 1992; 35: 357

[19] Wang K L, Fu M W, Lu S Q, Li X. Mater Des, 2011; 32: 1283

[20] Zhang X X, Sun Y H, Zhu Y L. Adv Mater Res, 2011;317–319: 170

[21] Ding H L, Hirai K, Homma T, Kamado S. Comput Mater Sci, 2010; 47: 919

[22] Yanagimoto J. Modell Simul Mater Sci Eng, 2004; 12: s47

[23] Lin Y C, Chen M S. J Mater Process Technol, 2009; 209:4578

[24] Ma Q, Lin Z Q, Yu Z Q. Int J Adv Manuf Technol, 2009;40: 253

[25] Yao Z H, Dong J X, Zhang M C. Acta Metall Sin, 2011;47: 1581

(姚志浩, 董建新, 张麦仓. 金属学报, 2011; 47: 1581)

[26] China Aeronautical Materials Handbook Editorial Committee. China Aeronautical Materials Handbook, 2nd Ed, Vol.2. Beijing: China Standards Press, 2001: 475

(中国航空材料手册编辑委员会编. 中国航空材料手册(第二版)/第二卷. 北京: 中国标准出版社, 2001: 475)
[1] 毕中南, 秦海龙, 刘沛, 史松宜, 谢锦丽, 张继. 高温合金锻件残余应力量化表征及控制技术研究进展[J]. 金属学报, 2023, 59(9): 1144-1158.
[2] 王重阳, 韩世伟, 谢峰, 胡龙, 邓德安. 固态相变和软化效应对超高强钢焊接残余应力的影响[J]. 金属学报, 2023, 59(12): 1613-1623.
[3] 张开元, 董文超, 赵栋, 李世键, 陆善平. 固态相变对Fe-Co-Ni超高强度钢长臂梁构件焊接-淬火过程应力和变形的影响[J]. 金属学报, 2023, 59(12): 1633-1643.
[4] 周小宾, 赵占山, 汪万行, 徐建国, 岳强. 渣-金界面气泡夹带行为数值物理模拟[J]. 金属学报, 2023, 59(11): 1523-1532.
[5] 夏大海, 邓成满, 陈子光, 李天书, 胡文彬. 金属材料局部腐蚀损伤过程的近场动力学模拟:进展与挑战[J]. 金属学报, 2022, 58(9): 1093-1107.
[6] 胡龙, 王义峰, 李索, 张超华, 邓德安. 基于SH-CCT图的Q345钢焊接接头组织与硬度预测方法研究[J]. 金属学报, 2021, 57(8): 1073-1086.
[7] 李子晗, 忻建文, 肖笑, 王欢, 华学明, 吴东升. 热导型等离子弧焊电弧物理特性和熔池动态行为[J]. 金属学报, 2021, 57(5): 693-702.
[8] 杨勇, 赫全锋. 高熵合金中的晶格畸变[J]. 金属学报, 2021, 57(4): 385-392.
[9] 张瑞, 刘鹏, 崔传勇, 曲敬龙, 张北江, 杜金辉, 周亦胄, 孙晓峰. 国内航空发动机涡轮盘用铸锻难变形高温合金热加工研究现状与展望[J]. 金属学报, 2021, 57(10): 1215-1228.
[10] 王富强, 刘伟, 王兆文. 铝电解槽中局部阴极电流增大对电解质-铝液两相流场的影响[J]. 金属学报, 2020, 56(7): 1047-1056.
[11] 刘继召, 黄鹤飞, 朱振博, 刘阿文, 李燕. 氙离子辐照后Hastelloy N合金的纳米硬度及其数值模拟[J]. 金属学报, 2020, 56(5): 753-759.
[12] 王波,沈诗怡,阮琰炜,程淑勇,彭望君,张捷宇. 冶金过程中的气液两相流模拟[J]. 金属学报, 2020, 56(4): 619-632.
[13] 张勇, 李鑫旭, 韦康, 万志鹏, 贾崇林, 王涛, 李钊, 孙宇, 梁红艳. 850 ℃涡轮盘用新型变形高温合金GH4975挤压棒材热变形规律研究[J]. 金属学报, 2020, 56(10): 1401-1410.
[14] 张国庆,张义文,郑亮,彭子超. 航空发动机用粉末高温合金及制备技术研究进展[J]. 金属学报, 2019, 55(9): 1133-1144.
[15] 许庆彦,杨聪,闫学伟,柳百成. 高温合金涡轮叶片定向凝固过程数值模拟研究进展[J]. 金属学报, 2019, 55(9): 1175-1184.