Please wait a minute...
金属学报  2012, Vol. 48 Issue (2): 135-141    DOI: 10.3724/SP.J.1037.2011.00472
  论文 本期目录 | 过刊浏览 |
粉末冶金制备SiCp/2009Al复合材料的相组成和元素分布
张琪1,2,王全兆1,肖伯律1,马宗义1
1. 中国科学院金属研究所, 沈阳 110016
2. 中国科学技术大学化学与材料科学学院, 合肥 230026
PHASES AND ELEMENTAL DISTRIBUTIONS IN SiCp/Al–Cu–Mg COMPOSITE FABRICATED BY POWDER METALLURGY
ZHANG Qi 1,2, WANG Quanzhao 1, XIAO Bol¨u 1, MA Zongyi 1
1. Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
2. School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026
引用本文:

张琪 王全兆 肖伯律 马宗义. 粉末冶金制备SiCp/2009Al复合材料的相组成和元素分布[J]. 金属学报, 2012, 48(2): 135-141.
, , , . PHASES AND ELEMENTAL DISTRIBUTIONS IN SiCp/Al–Cu–Mg COMPOSITE FABRICATED BY POWDER METALLURGY[J]. Acta Metall Sin, 2012, 48(2): 135-141.

全文: PDF(962 KB)  
摘要: 采用粉末冶金法制备SiCp/2009Al复合材料热压锭, 并对热压锭进行了热挤压,分析了热压态和挤压态复合材料的相组成和元素分布. 结果表明: 热压锭存在轻微的元素偏析, 下部Cu和Mg含量略高于上部. 热压态复合材料组成相主要为Al, SiC, Al2Cu和Mg2Si, 另外还含有少量的Al7Cu2Fe和Mg的氧化物. 经固溶处理后, Al2Cu和Mg2Si溶解, Cu在基体中均匀分布, 但Mg仍偏聚于原始铝颗粒边界和SiC团聚处. 挤压变形不改变复合材料的相组成, 但使SiC分布更均匀并破碎了铝颗粒表面的氧化膜.挤压态复合材料经固溶处理后, Cu和Mg均在基体中均实现了均匀分布.
关键词 粉末冶金 铝基复合材料 相组成 挤压、元素分布    
Abstract:SiCp/2009Al composites were fabricated through powder metallurgy and subsequent extrusion. The phases and elemental distributions in the hot pressed and extruded composites were studied. The slight macro–segregation was found in the hot pressed composite billet. The concentrations of Cu and Mg in the bottom of the billet are somewhat higher than those in the top of the billet. The hot pressed composite contains Al, SiC, Al2Cu, Mg2Si and a small quantity of Al7Cu2Fe and oxide of Mg. After solid solution treatment, Al2Cu and Mg2Si dissolved into the matrix and Cu was distributed uniformly in the matrix. However, Mg was still preferentially distributed near the boundaries of the Al particles and in the clusters of SiC. No change of the phases types in the composites was found, however, the extrusion resulted in uniformly distribution of the SiC particles and broke up the oxide shell of the initial Al particles, thus Cu and Mg were distributed homogeneously in the extruded composites after solid solution treatment.
Key wordspowder metallurgy    aluminum matrix composite    phase    extrusion    elemental distribution
收稿日期: 2011-07-22     
ZTFLH: 

TG146.2

 
基金资助:

国家重点基础发展计划资助项目2012CB619600

作者简介: 张琪, 男, 1982年生, 博士生
[1] Lloyd D J. Int Mater Rev, 1994; 39: 1

[2] Geiger A L, Walker J A. JOM, 1991; 43: 8

[3] Hong S H, Chung K H. Mater Sci Eng, 1995; A194: 165

[4] Song M, He Y H. Mater Des, 2010; 31: 985

[5] Jin P, Xiao B L, Wang Q Z, Ma Z Y, Liu Y, Li S. Acta Metall Sin, 2011; 47: 298

(金鹏, 肖伯律, 王全兆, 马宗义, 刘越, 李曙. 金属学报, 2011; 47: 298)

[6] Jin P, Xiao B L, Wang Q Z, Ma Z Y, Liu Y, Li S. Mater Sci Eng, 2011; A528: 1504

[7] Ogel B, Gurbuz R. Mater Sci Eng, 2001; A301: 213

[8] Zhou J, Duszczyk J. J Mater Sci, 1999; 34: 545

[9] Liu Z Y, Wang Q Z, Xiao B L, Ma Z Y, Liu Y. Mater Sci Eng, 2010; A527: 5582

[10] Mondolfo L F. Aluminum Alloys: Structure and Properties, London: Butterworths, 1976: 1

[11] Kiourtsidis G E, Skoliano S M, Litsardakis G A. Mater Sci Eng, 2004; A382: 351

[12] Urena A, Martinez E E, Rodrigo P, Gil L. Compos Sci Technol, 2004; 64: 1843

[13] Li Y, Li P, Zhao G, Liu X T, Cui J Z. Mater Sci Eng, 2005; A397: 204

[14] Rodrigo P, Poza P, Utrilla V, Urena A. J Alloys Compd, 2009; 479: 451

[15] Mcleod A D, Gabryel C M. Metall Trans, 1992; A23: 1279

[16] Strangwood M, Hippsley C A, Lewandowski J J. Scr Metall Mater, 1990; 24: 1483

[17] Nutt S R, Carpenter R W. Mate Sci Eng, 1985; 75: 169

[18] Kimura A, Shibata M, Kondoh K, Takeda Y, Katayama M, Kanie T, Takada H. Appl Phys Lett, 1997; 70: 3615

[19] Ma Z Y, Lu Y X, Luo M, Bi J. J Mater Sci Technol, 1995; 11: 291

[20] Liu Z Y, Wang Q Z, Xiao B L, Ma Z Y, Liu Y. Acta Metall Sin, 2010; 46: 1121

(刘振宇, 王全兆, 肖伯律, 马宗义, 刘越. 金属学报, 2010; 46: 1121)

[21] Gutin S S, Panov A A, Khlopin M I. Powder Metall Met Ceram, 1972; 11: 280
[1] 徐磊, 田晓生, 吴杰, 卢正冠, 杨锐. 热等静压成形Inconel 718粉末合金的显微组织和力学性能[J]. 金属学报, 2023, 59(5): 693-702.
[2] 马宗义, 肖伯律, 张峻凡, 朱士泽, 王东. 航天装备牵引下的铝基复合材料研究进展与展望[J]. 金属学报, 2023, 59(4): 457-466.
[3] 朱云鹏, 覃嘉宇, 王金辉, 马鸿斌, 金培鹏, 李培杰. 机械球磨结合粉末冶金制备AZ61超细晶镁合金的组织与性能[J]. 金属学报, 2023, 59(2): 257-266.
[4] 马国楠, 朱士泽, 王东, 肖伯律, 马宗义. SiC颗粒增强Al-Zn-Mg-Cu复合材料的时效行为和力学性能[J]. 金属学报, 2023, 59(12): 1655-1664.
[5] 张金勇, 赵聪聪, 吴宜谨, 陈长玖, 陈正, 沈宝龙. (Fe0.33Co0.33Ni0.33)84 -x Cr8Mn8B x 高熵非晶合金薄带的结构特征及其晶化行为[J]. 金属学报, 2022, 58(2): 215-224.
[6] 聂金凤, 伍玉立, 谢可伟, 刘相法. Al-AlN异构纳米复合材料的组织构型与热稳定性[J]. 金属学报, 2022, 58(11): 1497-1508.
[7] 毕胜, 李泽琛, 孙海霞, 宋保永, 刘振宇, 肖伯律, 马宗义. 高能球磨结合粉末冶金法制备碳纳米管增强7055Al复合材料的微观组织和力学性能[J]. 金属学报, 2021, 57(1): 71-81.
[8] 卢正冠,吴杰,徐磊,崔潇潇,杨锐. Ti2AlNb异形粉末环件的轧制成形与性能研究[J]. 金属学报, 2019, 55(6): 729-740.
[9] 吕钊钊,祖宇飞,沙建军,鲜玉强,张伟,崔鼎,严从林. 含Cu界面层碳纤维增强铝基复合材料制备工艺及其力学性能研究[J]. 金属学报, 2019, 55(3): 317-324.
[10] 覃嘉宇, 李小强, 金培鹏, 王金辉, 朱云鹏. 碳纳米管(CNTs)增强AZ91镁基复合材料组织与力学性能研究[J]. 金属学报, 2019, 55(12): 1537-1543.
[11] 马国楠, 王东, 刘振宇, 毕胜, 昝宇宁, 肖伯律, 马宗义. 热压烧结温度对SiC/Al-Zn-Mg-Cu复合材料微观结构与力学性能的影响[J]. 金属学报, 2019, 55(10): 1319-1328.
[12] 马凯, 张星星, 王东, 王全兆, 刘振宇, 肖伯律, 马宗义. SiC/2009Al复合材料的变形加工参数的优化仿真研究[J]. 金属学报, 2019, 55(10): 1329-1337.
[13] 王晨, 王贝贝, 薛鹏, 王东, 倪丁瑞, 陈礼清, 肖伯律, 马宗义. SiCp/6092Al复合材料搅拌摩擦焊接头的疲劳行为研究[J]. 金属学报, 2019, 55(1): 149-159.
[14] 陶然, 赵玉涛, 陈刚, 怯喜周. 电磁场下原位合成纳米ZrB2 np/AA6111复合材料组织与性能研究[J]. 金属学报, 2019, 55(1): 160-170.
[15] 赵乃勤, 刘兴海, 蒲博闻. 多维度碳纳米相增强铝基复合材料研究进展[J]. 金属学报, 2019, 55(1): 1-15.