Please wait a minute...
金属学报  2012, Vol. 48 Issue (1): 33-40    DOI: 10.3724/SP.J.1037.2011.00450
  论文 本期目录 | 过刊浏览 |
定向凝固Al-40%Cu合金三维微观组织重构及共晶间距演变
赵朋, 李双明, 傅恒志
西北工业大学凝固技术国家重点实验室, 西安 710072
THREE-DIMENSIONAL MICROSTRUCTURE RECONSTRUCTION AND THE EUTECTIC SPACING ADJUSTMENT DURING DIRECTIONAL SOLIDIFICATION OF Al-40%Cu HYPEREUTECTIC ALLOY
ZHAO Peng, LI Shuangming, FU Hengzhi
State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072
引用本文:

赵朋 李双明 傅恒志. 定向凝固Al-40%Cu合金三维微观组织重构及共晶间距演变[J]. 金属学报, 2012, 48(1): 33-40.
, , . THREE-DIMENSIONAL MICROSTRUCTURE RECONSTRUCTION AND THE EUTECTIC SPACING ADJUSTMENT DURING DIRECTIONAL SOLIDIFICATION OF Al-40%Cu HYPEREUTECTIC ALLOY[J]. Acta Metall Sin, 2012, 48(1): 33-40.

全文: PDF(5057 KB)  
摘要: 本文利用连续切片技术研究了定向凝固Al-40%Cu过共晶合金中金属间化合物Al2Cu 初生相的三维微观组织, 以及抽拉速率跃迁下, 三维共晶组织形态的演变和间距调整. 结果表明: 抽拉速率为5 µm/s时, 初生Al2Cu三维组织沿生长方向存在棱面和棱角, 表现出明显的棱面相生长形态; 凝固过程中初生Al2Cu相释放的结晶潜热使得生长界面发生局部重熔, 三维组织中出现孔洞, 形成拓扑缺陷. 在Al-40%Cu合金三维共晶组织中,  Al2Cu 相和Al相的体积分数分别为56.8%和43.2%, 且Al2Cu相的生长方向与试样轴向夹角为5.1o. 当抽拉速率从2 μm/s突然跃迁到500 μm/s时, 三维共晶组织形态从层片向棒状转变, 这种转变不是由合金中两相体积分数变化造成的. 三维共晶组织间距调整机制不同于二维组织中的分叉、内凹和界面重新形核, 而是通过三维空间非同一平面连续的分叉、分枝进行, 在三维下并没有观察到二维下的重新形核共晶间距调整机制.
关键词 连续切片技术三维组织重构定向凝固初生Al2Cu相共晶组织    
Abstract:Three-dimensional (3D) microstructures can clearly reveal the size, shape and distribution of the phases, providing a novel way to deeply understand the formation mechanism of the solidified phases. In this paper, by using the serial sectioning technique, the 3D microstructure of the primary Al2Cu phase was reconstructed and the eutectic spacing adjustment was investigated during directional solidification of Al-40%Cu hypereutectic alloy. The results show that the primary Al2Cu phase pattern was observed faceting due to the growing faceted angle and plane parallel to the solidification direction at the pulling rate of 5 μm/s. Further, there existed some hopper-like cavities in the 3D microstructure of the primary Al2Cu phase that caused by remelting owing to a large amount of the latent heat difficult to be extracted from the solidification interface. For the 3D eutectic microstructures of the Al-40%Cu alloy, the growth direction of the Al and Al2Cu phases in the coupled eutectics had a deviation angle of 5.1o with the heat flux direction and the phase volume fractions of the  Al and Al2Cu phases were measured directly to be 56.8% and 43.2%, respectively. In addition, at the abrupt change in pulling rate from 2 μm/s to 500 μm/s, the lamellar-to-rod eutectic transition was observed and the continuously splitting and branching occurred in different planes responsible for the eutectic spacing adjustment in the 3D microstructure of the Al-40%Cu alloy. Meanwhile the renuleation mechanism in the 2D microstructure for the adjustment of the eutectic spacing did not work in the 3D eutectic microstructure of the Al-40%Cu alloy.
Key wordsserial sectioning technique    three-dimensional microstructure reconstruction    directional solidification    primary Al2Cu phase    eutectic microstructure
收稿日期: 2011-07-15     
ZTFLH: 

TG111.4

 
基金资助:

国家自然科学基金项目50971101和51074127及西北工业大学基础研究基金项目JC201029资助

作者简介: 赵朋, 男, 1987年生, 硕士生
[1] Spanos G. Scr Mater, 2006; 55: 3

[2] Isheim D, Kolli R P, Fine M E, Seidman D N. Scr Mater, 2006; 55: 35

[3] Liu H H, Schmidt S, Poulsen H F, Godfrey A, Liu Z Q, Sharon J A, Huang X. Science, 2011; 332: 833

[4] Khor K H, Buffiere J Y, Ludwig W, Sinclair I. Scr Mater, 2006; 55: 47

[5] Spowart J E. Scr Mater, 2006; 55: 5

[6] Mendoza R, Savin I, Thornton K, Voorhees P W. Nat Mater, 2004; 3: 385

[7] Wu D T. Nat Mater, 2004; 3: 353

[8] Kammer D, Voorhees P W. Acta Mater, 2006; 54: 1549

[9] Kammer D, Mendoza R, Voorhees P W. Scr Mater, 2006; 55: 17

[10] Luo L S, Wang X, Su Y Q, Li X Z, Guo J J, Fu H Z. Mater Rev, 2010; 24: 1

(骆良顺, 王新, 苏彦庆, 李新中, 郭景杰, 傅恒志. 材料导报, 2010; 24: 1)

[11] Lee J H, Liu S, Trivedi R. Metall Mater Trans, 2005; 36A: 3111

[12] Norris S A, Davis S H, Watson S J, Voorhees P W. J Cryst Growth, 2008; 310: 414

[13] Dantzig J A, Rappaz M. Solidification. Swiss: EPFL Press, 2009: 362

[14] Walkers H, Liu S, Lee J H, Trivedi R. Metall Mater Trans, 2007; 38A: 1417

[15] Quan Q R, Li S M, Fu H Z. Acta Metall Sin, 2010; 46: 500

(全琼蕊, 李双明, 傅恒志. 金属学报, 2010; 46: 500)

[16] Contieri R J, Rios C T, Zanotello M, Caram R. Mater Charact, 2008; 59: 693

[17] Singh H, Gokhale A M, Tewari A, Zhang S, Mao Y. Scr Mater, 2009; 61: 441

[18] Lee S G, Gokhale A M, Sreeranganathan A. Mater Sci Eng, 2006; 427: 92

[19] Liu S, Lee J H, Enlow D, Trivedi R. In: Rappaz M, Beckermann C, Trivedi R eds., Solidification Processes and Microstructures. Charlotte: TMS, 2004: 257

[20] Hunt J D, Liu S Z. Handbook of Crystal Growth, Vol.2, North–Holland: Elsevier, 1994: 1113

[21] Stefanescu D M. Science and Engineering of Casting Solidification. 2nd Ed., Berlin: Springer, 2009: 215

[22] Kurz W, Fisher D J. Fundamentals of solidification. 4th Ed., Switzerland: Trans Tech Pub, 2005: 109

[23] Tang L, Li S M, Fu H Z. Rare Met Mater Eng, 2007; 36: 617

(唐玲, 李双明, 傅恒志. 稀有金属材料与工程, 2007; 36: 617)

[24] Sunagawa I. Morphology and Perfection. Cambridge: Cambridge University Press, 2005: 370

[25] Colfen H, Antonietti M. Mesocrystals and Nonclassical Crystallization. Mississauga: John Wiley & Sons Ltd, 2008: 25

[26] Singh H, Gokhale A M, Mao Y, Tewari A, Sachdev A K. J Cryst Growth, 2009; 311: 4454

[27] Cantor B, Chadwick G A. J Cryst Growth, 1974; 23: 12

[28] Seetharamn V, Trivedi R. In: Stefanescu D M, Abbashian G J eds., Solidification Processing of Eutectic Alloys. Cincinnati: TMS, 1988: 65

[29] Hu H Q. Theory of Metal Solidification. 2nd Ed., Beijing: China Machine Press, 2000: 175

(胡汉起. 金属凝固原理. 第2版, 北京: 机械工业出版社, 2000: 175)
[1] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[2] 马德新, 赵运兴, 徐维台, 王富. 重力对高温合金定向凝固组织的影响[J]. 金属学报, 2023, 59(9): 1279-1290.
[3] 苗军伟, 王明亮, 张爱军, 卢一平, 王同敏, 李廷举. AlCr1.3TiNi2 共晶高熵合金的高温摩擦学性能及磨损机理[J]. 金属学报, 2023, 59(2): 267-276.
[4] 苏震奇, 张丛江, 袁笑坦, 胡兴金, 芦可可, 任维丽, 丁彪, 郑天祥, 沈喆, 钟云波, 王晖, 王秋良. 纵向静磁场下单晶高温合金定向凝固籽晶回熔界面杂晶的形成与演化[J]. 金属学报, 2023, 59(12): 1568-1580.
[5] 李彦强, 赵九洲, 江鸿翔, 何杰. Pb-Al合金定向凝固组织形成过程[J]. 金属学报, 2022, 58(8): 1072-1082.
[6] 陈瑞润, 陈德志, 王琪, 王墅, 周哲丞, 丁宏升, 傅恒志. Nb-Si基超高温合金及其定向凝固工艺的研究进展[J]. 金属学报, 2021, 57(9): 1141-1154.
[7] 马德新, 赵运兴, 徐维台, 皮立波, 李重行. 高温合金单晶铸件中共晶组织分布的表面效应[J]. 金属学报, 2021, 57(12): 1539-1548.
[8] 张小丽, 冯丽, 杨彦红, 周亦胄, 刘贵群. 二次枝晶取向对镍基高温合金晶粒竞争生长行为的影响[J]. 金属学报, 2020, 56(7): 969-978.
[9] 许庆彦,杨聪,闫学伟,柳百成. 高温合金涡轮叶片定向凝固过程数值模拟研究进展[J]. 金属学报, 2019, 55(9): 1175-1184.
[10] 张健,王莉,王栋,谢光,卢玉章,申健,楼琅洪. 镍基单晶高温合金的研发进展[J]. 金属学报, 2019, 55(9): 1077-1094.
[11] 方辉,薛桦,汤倩玉,张庆宇,潘诗琰,朱鸣芳. 定向凝固糊状区枝晶粗化和二次臂迁移的实验和模拟[J]. 金属学报, 2019, 55(5): 664-672.
[12] 唐文书,肖俊峰,李永君,张炯,高斯峰,南晴. 再热恢复处理对蠕变损伤定向凝固高温合金γ′相的影响[J]. 金属学报, 2019, 55(5): 601-610.
[13] 杨燕, 杨光昱, 罗时峰, 肖磊, 介万奇. Mg-14.61Gd合金的定向凝固组织及生长取向[J]. 金属学报, 2019, 55(2): 202-212.
[14] 金浩, 贾清, 刘荣华, 线全刚, 崔玉友, 徐东生, 杨锐. 籽晶制备及Ti-47Al合金PST晶体取向控制[J]. 金属学报, 2019, 55(12): 1519-1526.
[15] 康慧君, 李金玲, 王同敏, 郭景杰. 定向凝固Al-Mn-Be合金初生金属间化合物相生长行为及力学性能[J]. 金属学报, 2018, 54(5): 809-823.