Please wait a minute...
金属学报  2011, Vol. 47 Issue (11): 1470-1476    DOI: 10.3724/SP.J.1037.2011.00355
  论文 本期目录 | 过刊浏览 |
抽拉速率对定向凝固叶片状DZ125高温合金微观组织的影响
葛丙明, 刘林, 张胜霞, 张军, 李亚峰, 傅恒志
西北工业大学凝固技术国家重点实验室, 西安 710072
INFLUENCE OF WITHDRAWAL RATE ON MICROSTRUCTURES OF BLADE SHAPED DIRECTIONALLY SOLIDIFIED DZ125 SUPERALLOY
GE Bingming, LIU Lin, ZHANG Shengxia, ZHANG Jun, LI Yafeng, FU Hengzhi
State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072
引用本文:

葛丙明 刘林 张胜霞 张军 李亚峰 傅恒志. 抽拉速率对定向凝固叶片状DZ125高温合金微观组织的影响[J]. 金属学报, 2011, 47(11): 1470-1476.
, , , , , . INFLUENCE OF WITHDRAWAL RATE ON MICROSTRUCTURES OF BLADE SHAPED DIRECTIONALLY SOLIDIFIED DZ125 SUPERALLOY[J]. Acta Metall Sin, 2011, 47(11): 1470-1476.

全文: PDF(3481 KB)  
摘要: 应用液态金属冷却(LMC)和高速凝固(HRS)定向凝固技术, 对DZ125高温合金叶片状铸件在不同抽拉速率下的组织演变规律进行了研究,并对比研究了LMC和HRS法所得铸件的微观组织. 结果表明, 同一定向凝固方法下, 随抽拉速率的提高, 铸件枝晶组织及γ'析出相得到细化; 应用LMC技术所制备铸件的枝晶组织和γ'析出相较相同抽拉速率HRS方法时更为细小; 相同工艺参数下LMC和HRS方法所制备铸件一次枝晶间距的差异随铸件壁厚及抽拉速率的增大而更显著. 通过对固/液界面前沿温度梯度进行估算发现, LMC方法可获得更高的温度梯度, 且其温度梯度受抽拉速率变化影响较HRS更小. 除70 μm/s抽拉速率外, LMC法所得γ+γ'共晶组织的含量均显著少于HRS方法; 70 μm/s抽拉速率时, LMC法产生的偏析较严重, 而其余凝固条件下偏析程度较相同工艺参数下HRS轻. 110 μm/s抽拉速率时, HRS方法较LMC方法制备铸件中MC型碳化物尺寸更大.
关键词 镍基高温合金定向凝固抽拉速率温度梯度液态金属冷却法高速凝固法    
Abstract:As a precipitation hardened unidirectionally solidified Ni-based superalloy, DZ125 has been widely applied as structure materials in advanced aeroengine for gas turbine blades and vanes. In present, the paper on the influence of solidification parameters on microstructures have been largely published, but unfortunately, few of them have focused on giving a direct comparison between directional solidification characteristics in liquid metal cooling (LMC) and high rate solidification (HRS). In this paper, the influences of processing parameters on microstructures of blade shaped castings prepared both by LMC and HRS technique were studied. The results show that the dendrite structure and γ' precipitate in castings prepared by the same method are refined with elevated withdrawal rate; in the same solidification conditions, the LMC castings have finer dendrite structure and γ' precipitate than HRS, the larger the disparity between primary dendrite arm spacings in LMC and HRS castings, the thicker wall thickness is or the higher the withdrawal rate is. It is found that higher temperature gradient in front of solid/liquid interface can be obtained by LMC, and its variation with elevated withdrawal rate, however, is smaller than that by HRS. The γ+γ eutectic fraction is lower for LMC castings than HRS castings except for withdrawal rate of 70 μm/s, only at which more severe segregation than HRS's occurs. Chinese script type MC flakes between dendrites in HRS castings are larger at withdrawal rate of 110 μm/s.
Key wordsNi-based superalloy    directional solidification    withdrawal rate    thermal gradient    liquid metal cooling    high rate solidification
收稿日期: 2011-06-07     
基金资助:

国家自然科学基金项目 50931004和50827102, 国家重点基础研究发展计划项目2006CB605202和2010CB631202 以及国家高技术研究发展计划项目2007AA03Z552资助

作者简介: 葛丙明, 男, 1983年生, 博士生
[1] Versnyder F I, Shank M E. Mater Sci Eng, 1970; A6: 213

[2] Chen J Y, Zhao B, Feng Q, Cao L M, Sun Z Q. Acta Metall Sin, 2010; 46: 897

(陈晶阳, 赵宾, 冯 强, 曹腊梅, 孙祖庆. 金属学报, 2010; 46: 897)

[3] Konter M, Kats E, Hofmann N A. In: Pollock T M, Kissinger R D, Bowman R R, Green K A, Mclean M, Olson S, Schirra J J eds., Superalloys 2000, Warrendale, PA: TMS, 2000: 189

[4] Nakagawa Y G, Ohotomo Y, Saiga Y. In: Tien J K, Gell M, Maurer G, Wlodek S T eds., Superalloys 1980, Warrendale, PA: TMS, 1980: 267

[5] Giamei A F, Tschinkel J G. Metall Trans, 1976; 7A: 1427

[6] Fu H Z. Directional Solidification and Processing of Advanced Materials. Beijing: Science Press, 2008: 492

(傅恒志. 先进材料定向凝固. 北京: 科学出版社, 2008: 492)

[7] McLean M. Directionally Solidified Materials for High Temperature Service. UK: The Metals Society, 1983: 11

[8] Chen H J, Wever H. J Mater Eng, 2000; 11: 45

(陈鸿均, Wever H. 材料工程, 2000; 11: 45 )

[9] Jiang L W, Li S S, Qiu Z C, Han Y F. Acta Metall Sin, 2009; 45: 547

(蒋立武, 李树索, 邱自成, 韩亚芳. 金属学报, 2009; 45: 547)

[10] Lamm M, Singer R F. Metall Mater Trans, 2007; 38A: 1177

[11] Whitesell H S, Li L, Overfelt R A. Metall Mater Trans, 2000; 31B: 546

[12] Zhang J, Li J G, Jin T, Sun X F, Hu Z Q. J Mater Sci Technol, 2010; 26: 889

[13] Takao M, Toshiharu K, Yutaka K, Hiroshi H. Acta Mater, 2004; 52: 3737

[14] Bhambri A K, Kattamis T Z, Morral J E. Matall Trans, 1975; 6B: 532

[15] Zupaniˇc F, Bomˇcina T, Kriˇzman A, Markoli B, Spaic S. Scr Mater, 2002; 46: 667

[16] Kearsy R M, Beddoes J C, Jaansalu K M, Thompson W T, Au P. In: Green K A, Pollock TM, Harada H, Howson T E, Reed R C, Schirra J J, Walston S eds., Superalloys 2004, Warrendale, PA: TMS, 2004: 723

[17] Kuleshova E A, Cherkasova E R, Logunov A V. Metalloved Term Obrab Met, 1981; 6: 20

[18] Guo X P, Fu H Z, Sun J H. Metall Mater Trans, 1997; 28A: 997

[19] Liu L, Sommer F, Fu H Z. Scr Metall Mater, 1994; 30: 587

[20] Zhao K, Ma Y X, Lou L H. J Alloys Compd, 2009; 475: 648

[21] Elliott A J, Pollock T M, Tin S, King W T, Huang S C, Gigliotti M F. Metall Mater Trans, 2004; 35A: 3221

[22] Zhang J, Lou L H. J Mater Sci Technol, 2007; 23: 289

[23] G¨und¨uz M, C¸ad?rl? E. Mater Sci Eng, 2002; A327: 167

[24] Hunt J D. Solidification and Casting of Metals. London: The Metal Society, 1979: 3

[25] ZhangWG. PhD Thesis, Northwestern Polytechnical University, Xi’an, 2009

(张卫国. 西北工业大学博士论文, 西安, 2009)

[26] Min Z X, Shen J, Wang L S, Feng Z R, Liu L, Fu H Z. Acta Metall Sin, 2010; 46: 1075

(闵志先, 沈军, 王灵水, 冯周荣, 刘林, 傅恒志. 金属学报, 2010; 46: 1075)

[27] Zheng Y R. Acta Metall Sin, 1986; 22: 119

(郑运荣. 金属学报, 1986; 22: 119)

[28] Liu L. PhD Thesis, Xi’an: Northwestern Polytechnical University, 1988

(刘林. 西北工业大学博士论文, 西安, 1988)
[1] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[2] 马德新, 赵运兴, 徐维台, 王富. 重力对高温合金定向凝固组织的影响[J]. 金属学报, 2023, 59(9): 1279-1290.
[3] 王磊, 刘梦雅, 刘杨, 宋秀, 孟凡强. 镍基高温合金表面冲击强化机制及应用研究进展[J]. 金属学报, 2023, 59(9): 1173-1189.
[4] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[5] 江河, 佴启亮, 徐超, 赵晓, 姚志浩, 董建新. 镍基高温合金疲劳裂纹急速扩展敏感温度及成因[J]. 金属学报, 2023, 59(9): 1190-1200.
[6] 穆亚航, 张雪, 陈梓名, 孙晓峰, 梁静静, 李金国, 周亦胄. 基于热力学计算与机器学习的增材制造镍基高温合金裂纹敏感性预测模型[J]. 金属学报, 2023, 59(8): 1075-1086.
[7] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[8] 张禄, 余志伟, 张磊成, 江荣, 宋迎东. GH4169高温合金热机械疲劳循环损伤机理及数值模拟[J]. 金属学报, 2023, 59(7): 871-883.
[9] 刘来娣, 丁彪, 任维丽, 钟云波, 王晖, 王秋良. DZ445镍基高温合金高温长时间氧化形成的多层膜结构[J]. 金属学报, 2023, 59(3): 387-398.
[10] 苏震奇, 张丛江, 袁笑坦, 胡兴金, 芦可可, 任维丽, 丁彪, 郑天祥, 沈喆, 钟云波, 王晖, 王秋良. 纵向静磁场下单晶高温合金定向凝固籽晶回熔界面杂晶的形成与演化[J]. 金属学报, 2023, 59(12): 1568-1580.
[11] 于少霞, 王麒, 邓想涛, 王昭东. GH3600镍基高温合金极薄带的制备及尺寸效应[J]. 金属学报, 2023, 59(10): 1365-1375.
[12] 祝国梁, 孔德成, 周文哲, 贺戬, 董安平, 疏达, 孙宝德. 选区激光熔化 γ' 相强化镍基高温合金裂纹形成机理与抗裂纹设计研究进展[J]. 金属学报, 2023, 59(1): 16-30.
[13] 李彦强, 赵九洲, 江鸿翔, 何杰. Pb-Al合金定向凝固组织形成过程[J]. 金属学报, 2022, 58(8): 1072-1082.
[14] 陈瑞润, 陈德志, 王琪, 王墅, 周哲丞, 丁宏升, 傅恒志. Nb-Si基超高温合金及其定向凝固工艺的研究进展[J]. 金属学报, 2021, 57(9): 1141-1154.
[15] 朱玉平, 盛乃成, 谢君, 王振江, 荀淑玲, 于金江, 李金国, 杨林, 侯桂臣, 周亦胄, 孙晓峰. 高钨镍基高温合金K416BW相的析出行为[J]. 金属学报, 2021, 57(2): 215-223.