Please wait a minute...
金属学报  2011, Vol. 47 Issue (7): 831-838    DOI: 10.3724/SP.J.1037.2011.00300
  论文 本期目录 | 过刊浏览 |
电解抛光态690TT合金经不同时间浸泡后表面氧化膜结构分析
张志明, 王俭秋, 韩恩厚, 柯伟
中国科学院金属研究所金属腐蚀与防护国家重点实验室, 沈阳 110016
ANALYSES OF SURFACE OXIDE FILMS ON ELECTROPOLISHED ALLOY 690TT AFTER IMMERSION FOR DIFFERENT TIMES
ZHANG Zhiming, WANG Jianqiu, HAN En-Hou, KE Wei
State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
引用本文:

张志明 王俭秋 韩恩厚 柯伟. 电解抛光态690TT合金经不同时间浸泡后表面氧化膜结构分析[J]. 金属学报, 2011, 47(7): 831-838.
, , , . ANALYSES OF SURFACE OXIDE FILMS ON ELECTROPOLISHED ALLOY 690TT AFTER IMMERSION FOR DIFFERENT TIMES[J]. Acta Metall Sin, 2011, 47(7): 831-838.

全文: PDF(1624 KB)  
摘要: 利用AFM, SEM, TEM, EDS及XPS分析了电解抛光处理690TT合金在含B和Li, 充 H2的高温高压水溶液中经不同时间浸泡后表面生长氧化膜的微观结构. 结果表明, 从短期氧化到长期氧化, 氧化膜表面形貌变化不明显; 氧化膜主要由具有尖晶石结构的氧化物和单质Ni构成. 浸泡720, 1440和2160 h后, 氧化膜均由外层、中间层和内层构成: 外层是分散的富含Ni和Fe的尖晶石结构的大颗粒氧化物; 中间层是疏松的富含Ni的尖晶石结构的针状氧化物; 内层是连续致密的富Cr氧化物. 仅氧化膜中的内层氧化物能对基体起到良好的保护作用. 电解抛光处理不利于690TT合金表面保护性氧化膜的快速生长. 浸泡至2160 h后, 氧化膜依然缺乏保护性, 内层氧化膜的平均生长速率并未显著降低.
关键词 690TT合金电解抛光处理浸泡时间氧化膜保护性结构    
Abstract:The corrosion of Ni base alloys in high temperature and high pressure water is affected by samples surface statuses. The morphologies and structures of surface oxide films grown on electropolished (EP) alloy 690TT after immersion in the simulated hydrogenated primary water of pressured water reactors (PWRs) for different times were analyzed by AFM, SEM, TEM, EDS and XPS. After immersion for 15 and 35 h, the EP alloy 690TT samples were covered with columnar oxides. With the increase of the immersion time, the sample surfaces were covered with scattered big oxide particles and loose needle-like oxides. Regardless of the immersion time, the formed oxide films are composed of spinel oxides and metallic Ni. After immersion for 720, 1440 and 2160 h, the oxide films are composed of three layers: the outmost layer is the separated big oxide particles which are rich in Fe and Ni; the intermediate layer is the loose needle--like oxides rich in Ni; the inner layer is the continuous and compact Cr oxides. The peak decomposition of the XPS revealed that the Cr oxides in the inner layer are probably Cr2O3. Only the inner layer in the oxide film could restrain the outward diffusion of metal atoms and also the inward diffusion of the oxygen atoms and then played the role of barrier layer well. Electropolishing treatment disadvantaged the fast growth of protective oxide film on alloy 690TT in the studied solution. The average corrosion rate of the inner layer does not decrease gradually with increasing the immersion time. After immersion for 2160 h, the oxide film still could not protect the matrix from further corrosion.
Key wordsNi base alloy 690TT    eletropolishing treatment    immersion time    oxide film    protective structure
收稿日期: 2011-05-12     
基金资助:

国家重点基础研究发展计划项目2011CB610502和国家自然科学基金项目51025104资助

作者简介: 张志明, 男, 1983年生, 博士生
[1] Chinese Academic of Engineering. Study of the National Development Strategy on Medium– and Long–Term Program for Energy: Electrical Power, Oil and Gas, Nuclear Power and Environment. Beijing: Science Press, 2011: 218

(中国工程院. 中国能源中长期(2030, 2050)发展战略研究: 电力?油气?核能?环境卷. 北京: 科学出版社, 2011: 218)

[2] Staehle R W. International Seminar on Materials Problems in Light Water Nuclear Power Plants: Status, Mitigation, Future Problems, Suzhou: Institute of Metal Research, Chinese Academy of Sciences, Suzhou Nuclear Power Research Institute, the Second Research and Design Institute of Nuclear Industry, Feb 20–23, 2005

[3] Sun H. PhD Thesis, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 2010

(孙华. 中国科学院金属研究所博士学位论文, 沈阳, 2010)

[4] Staehle R W, Gorman J A. Corrosion, 2003; 59: 931

[5] Han E H, Wang J Q, Wu X Q, Ke W. Acta Metall Sin, 2010; 46: 1379

(韩恩厚, 王俭秋, 吴欣强, 柯 伟. 金属学报, 2010; 46: 1379)

[6] Lee S J, Lai J J. J Mater Process Technol, 2003; 140: 206

[7] Ziemniak S E, Hanson M, Sander P C. Corros Sci, 2008; 50: 2465

[8] Robertson J. Corros Sci, 1991; 32: 443

[9] Ding X S. Nucl Power Eng Technol, 2000; 13(4): 37

(丁训慎. 核电工程与技术, 2000; 13(4): 37)

[10] Terachi T, Totsuka N, Yamada T, Nakagawa T, Deguchi H, Horiuchi M, Oshitani M. J Nucl Sci Technol, 2003; 40: 509

[11] Ziemniak S E, Hanson M. Corros Sci, 2006; 48: 498

[12] Ziemniak S E, Hanson M. Corros Sci, 2002; 44: 2209

[13] Zhang Z M, Wang J Q, Han E H, Ke W. Acta Metall Sin, 2011; 47: 823

(张志明, 王俭秋, 韩恩厚, 柯伟. 金属学报, 2011; 47: 823)

[14] Hermas A A. Corros Sci, 2008; 50: 2498

[15] Stefanov P, Stoychev D, Stoycheva M, Marinova T. Mater Chem Phys, 2000; 65: 212

[16] Sun H, Wu X Q, Han E H. Corros Sci, 2009; 51: 2840

[17] McIntype N S, Rummery T E, Cook M G, Owen D. J Electrochem Soc, 1976; 123: 1164

[18] Machet A, Galtayries A, Zanna S, Klein L, Maurice V, Jolivet P, Foucault M, Combrade P, Scott P, Marcus P. Electrochim Acta, 2004; 49: 3957

[19] McIntype N S, Zetaruk D G, Owen D. J Electrochem Soc, 1979; 126: 750

[20] Carette F, Lafont M C, Chatainier G, Guinard L, Pieraggi B. Surf Interface Anal, 2002; 34: 135

[21] Machet A, Galtayries A, Marcus P, Combrade P, Jolivet P, Scott P. Surf Interface Anal, 2002; 34: 197

[22] Sun M C, Wu X Q, Zhang Z E, Han E H. J Supercrit Fluids, 2008; 47: 309

[23] Panter J, Viguier B, Clou´e J M, Foucault M, Combrade P, Andrieu E. J Nucl Mater, 2006; 348: 213

[24] Zhang Z M, Wang J Q, Han E H, Ke W. Corros Sci, 2011, submitted

[25] Zhang Z M, Wang J Q, Han E H, Ke W. Corros Sci, 2011, accepted

[26] Li M S. High Temperature Corrosion of Metals. Beijing: Metallurgical Industry Press, 2001: 162

(李美栓. 金属的高温腐蚀. 北京: 机械工业出版社, 2001: 162)

[27] Marchetti L, Perrin S, Raquet O, Pijolat M. Mater Sci Forum, 2008; 595–598: 529

[28] Lister D H, Davidson R D, Mcalpine E. Corros Sci, 1987; 27: 113

[29] Zhang Z M, Wang J Q, Han E H, Ke W. J Mater Sci Technol, 2011, accepted
[1] 刘来娣, 丁彪, 任维丽, 钟云波, 王晖, 王秋良. DZ445镍基高温合金高温长时间氧化形成的多层膜结构[J]. 金属学报, 2023, 59(3): 387-398.
[2] 沈朝, 王志鹏, 胡波, 李德江, 曾小勤, 丁文江. 镁合金抗高温氧化机理研究进展[J]. 金属学报, 2023, 59(3): 371-386.
[3] 徐文国, 郝文江, 李应举, 赵庆彬, 卢炳聿, 郭和一, 刘天宇, 冯小辉, 杨院生. 微量AlTiInconel 690合金高温氧化行为的影响[J]. 金属学报, 2023, 59(12): 1547-1558.
[4] 孙蓉蓉, 姚美意, 林晓冬, 张文怀, 仇云龙, 胡丽娟, 谢耀平, 杨健, 董建新, 成国光. 添加TiFe22Cr5Al3Mo合金在500℃过热蒸汽中腐蚀行为的影响[J]. 金属学报, 2022, 58(5): 610-622.
[5] 林晓冬, 马海滨, 任啟森, 孙蓉蓉, 张文怀, 胡丽娟, 梁雪, 李毅丰, 姚美意. Fe13Cr5Al4Mo合金在高温高压水环境中的腐蚀行为[J]. 金属学报, 2022, 58(12): 1611-1622.
[6] 钱月,孙蓉蓉,张文怀,姚美意,张金龙,周邦新,仇云龙,杨健,成国光,董建新. NbFe22Cr5Al3Mo合金显微组织和耐腐蚀性能的影响[J]. 金属学报, 2020, 56(3): 321-332.
[7] 包飞洋, 李艳芬, 王光全, 张家榕, 严伟, 石全强, 单以银, 杨柯, 许斌, 宋丹戎, 严明宇, 魏学栋. ODS钢在600700 ℃静态Pb-Bi共晶中的腐蚀行为及机理[J]. 金属学报, 2020, 56(10): 1366-1376.
[8] 张笑一, 尚海龙, 马冰洋, 李荣斌, 李戈扬. 镀膜Al箔钎料对AlN陶瓷的钎焊[J]. 金属学报, 2018, 54(4): 575-580.
[9] 杨忠波,赵文金,程竹青,邱军,张海,卓洪. Nb含量对 Zr-xNb-0.4Sn-0.3Fe合金耐腐蚀性能的影响[J]. 金属学报, 2017, 53(1): 47-56.
[10] 王家贞,王俭秋,韩恩厚. 800合金在300 ℃ NaOH和ETA溶液中的腐蚀行为*[J]. 金属学报, 2016, 52(5): 599-606.
[11] 欧美琼,刘扬,查向东,马颖澈,程乐明,刘奎. 一种新型镍基合金在超临界多种离子共存环境下的腐蚀行为*[J]. 金属学报, 2016, 52(12): 1557-1564.
[12] 王俭秋, 黄发, 柯伟. Inconel 690TT和Incoloy 800MA蒸汽发生器管材在高温高压水中的腐蚀行为研究*[J]. 金属学报, 2016, 52(10): 1333-1344.
[13] 苟少秋,周邦新,谢世敬,徐龙,姚美意,李强. Zr-4合金在LiOH水溶液中腐蚀时氧化膜生长各向异性的研究*[J]. 金属学报, 2015, 51(8): 993-1000.
[14] 彭以超, 张麦仓, 杜晨阳, 董建新. 服役态Cr35Ni45Nb合金高温真空渗碳行为及相演化机理研究[J]. 金属学报, 2015, 51(1): 11-20.
[15] 张志明, 王俭秋, 韩恩厚, 柯伟. 电解抛光态690TT合金在顺序溶氢/溶氧的高温高压水中表面氧化膜结构分析[J]. 金属学报, 2015, 51(1): 85-92.