Please wait a minute...
金属学报  2011, Vol. 47 Issue (11): 1440-1444    DOI: 10.3724/SP.J.1037.2011.00296
  论文 本期目录 | 过刊浏览 |
碳热还原氮化法合成MgAlON
戴文斌, 王新丽, 于景坤, 邹宗树
东北大学材料与冶金学院, 沈阳 110819
PRODUCTION OF MgAlON BY CARBOTHERMAL REDUCTION AND NITRIDATION
DAI Wenbin, WANG Xinli, YU Jingkun, ZOU Zongshu
School of Materials and Metallurgy, Northeastern University, Shenyang 110819
引用本文:

戴文斌 王新丽 于景坤 邹宗树. 碳热还原氮化法合成MgAlON[J]. 金属学报, 2011, 47(11): 1440-1444.
, , , . PRODUCTION OF MgAlON BY CARBOTHERMAL REDUCTION AND NITRIDATION[J]. Acta Metall Sin, 2011, 47(11): 1440-1444.

全文: PDF(1756 KB)  
摘要: 利用重力计, 比重仪, SEM, XRD, 碳素分析仪, XFS和氧氮分析仪检测了不同加热条件下碳热还原氮化法合成镁阿隆(MgAlON)的密度、微观结构、相组成以及Mg, Al, O, N和C含量, 讨论了碳热还原氮化法合成MgAlON的机理. 结果表明, 加热温度为1100℃时, 原料中所有的MgO反应生成镁铝尖晶石(MgAl2O4ss); 当加热温度高于1300℃时, 发生碳热还原氮化反应,  N固溶于MgAl2O4ss生成MgAlON; 由于碳热还原氮化反应不断消耗Al2O3, 加热温度为1600℃时试样中Al2O3大颗粒的尺寸较加热温度为1500℃时的小; 随着石墨和Al2O3在反应过程被完全消耗, 在1650℃下加热获得了单相MgAlON. 另外, 碳热还原氮化反应中N原子向尖晶石结构MgAl2O4ss中固溶时导致晶格畸变而使原子间隙扩大, 从而Al在MgAlON的固溶量高于其在MgAl2O4ss中的固溶量. 由于碳热还原氮化反应过程产生气体及高温下Mg蒸汽分压较高, 即使加热温度提高至1800℃, 试样中仍然存在大量密闭气孔.
关键词 MgAlON碳热还原微观结构    
Abstract:Gravimeter, pycnometer, SEM, XRD, carbon analyzer, XFS and oxygen-nitrogen analyzer were utilized to study the production of magnesium aluminium oxynitride (MgAlON) by carbothermal reduction and nitridation (CRN) under different temperatures and its formation mechanism was also discussed in the present paper. The results show that all of the raw MgO are completely consumed to form MgAl2O4ss at 1100℃. At sintered temperatures higher than 1300℃, the CRN reaction is taken place, and MgAlON is formed by solid solving N into MgAl2O4ss. The consumption of Al2O3 during CRN reaction causes the particle size of Al2O3 in the sample heated at 1600℃ to be smaller than that heated at 1500℃. Finally, the monophase MgAlON is obtained at 1650℃ when all the graphite and Al2O3 have been consumed. Moreover, because of the solid solution of N into MgAl2O4ss, the amount of defects in the lattice of MgAlON is raised leading to the solubility of Al in MgAlON being higher than that in MgAl2O4ss. Lots of closed pores are remained in grains even if the heating temperature has been raised to 1800℃ due to higher volatile Mg partial pressure and the gas phase product of CRN reaction at high temperature.
Key wordsMgAlON    carbothermal reduction and nitridation (CRN)    microstructure
收稿日期: 2011-05-09     
ZTFLH: 

TB321

 
基金资助:

高等学校博士学科点专项科研基金资助项目20090042120009

作者简介: 戴文斌, 男, 1979年生, 讲师, 博士
[1] Lofaj F, Doˇc´akov´a F, HoffmannM. J Mater Sci, 2005; 40: 47

[2] Zhang T. Refractories, 2002; 36: 26

(张涛. 耐火材料, 2002; 36: 246)

[3] Luo X Y, Sun J L, Wang J X, Hong Y R. Refractories, 2000; 34: 147

(罗星源, 孙加林, 王金相, 洪彦若. 耐火材料, 2000; 34: 147)

[4] Deng C J, Hong Y R, Zhong X C, Sun J L. Refractories, 2001; 35: 135

(邓承继, 洪彦若, 钟香崇, 孙加林. 耐火材料, 2001; 35: 135)

[5] Granon A, Goeuriot P, Thevenot F, Guyader J, L’Jaridon P, Laurent Y. J Euro Ceram Soc, 1994; 14: 365

[6] Bandyopadhyay S, Rixecker G, Aldinger F, Maiti S. J Am Ceram Soc, 2004; 87: 480

[7] Zhang H X, Huang Y, Li H F, Wang Z J. Ceram Sin, 2005; 26: 13

(张厚兴, 黄勇, 李海峰, 万之坚. 陶瓷学报, 2005; 26: 13)

[8] Dai W B, Yamaguchi A, Lin W, Ommyoji J, Yu J K, Zou Z S. J Ceram Soc Jpn, 2007; 115: 515

[9] Wang X T, Wang H Z, Zhang W J, Sun J L, Hong Y R. Key Eng Mater, 2002; 224–226: 373

[10] Dai W B, Lin W, Yamaguchi A, Ommyoji J, Yu J K, Zou Z S. J Ceram Soc Jpn, 2007; 114: 42

[11] American Ceramic Society. ACers–NIST Phase Equilbria Database–ver. 3.0.1. Westerville, OH: American Ceramic Society, 2004

[12] Morey O, Goeuriot P. J Euro Ceramic Soc, 2005; 25: 501

[13] Mackenzie K J D, Temuujin J, Jadambaa T, Smithi M E, Angerer P. J Mater Sci, 2000; 35: 5529

[14] Dai W B, Wang X L, Zhao P, Zhao L, Yu J K. J Ceram Soc Jpn, 2011; 119: 31
[1] 张德印, 郝旭, 贾宝瑞, 吴昊阳, 秦明礼, 曲选辉. Y2O3 含量对燃烧合成Fe-Y2O3 纳米复合粉末性能的影响[J]. 金属学报, 2023, 59(6): 757-766.
[2] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[3] 杨超, 卢海洲, 马宏伟, 蔡潍锶. 选区激光熔化NiTi形状记忆合金研究进展[J]. 金属学报, 2023, 59(1): 55-74.
[4] 解磊鹏, 孙文瑶, 陈明辉, 王金龙, 王福会. 制备工艺对FGH4097高温合金微观组织与性能的影响[J]. 金属学报, 2022, 58(8): 992-1002.
[5] 李金富, 李伟. 铝基非晶合金的结构与非晶形成能力[J]. 金属学报, 2022, 58(4): 457-472.
[6] 张显程, 张勇, 李晓, 王梓萌, 贺琛贇, 陆体文, 王晓坤, 贾云飞, 涂善东. 异构金属材料的设计与制造[J]. 金属学报, 2022, 58(11): 1399-1415.
[7] 马敏静, 屈银虎, 王哲, 王军, 杜丹. Ag-CuO触点材料侵蚀过程的演化动力学及力学性能[J]. 金属学报, 2022, 58(10): 1305-1315.
[8] 王洪伟, 何竹风, 贾楠. 非均匀组织FeMnCoCr高熵合金的微观结构和力学性能[J]. 金属学报, 2021, 57(5): 632-640.
[9] 李宁, 黄信. 块体非晶合金的3D打印成形研究进展[J]. 金属学报, 2021, 57(4): 529-541.
[10] 潘杰, 段峰辉. 非晶合金的回春行为[J]. 金属学报, 2021, 57(4): 439-452.
[11] 周丽, 李明, 王全兆, 崔超, 肖伯律, 马宗义. 31%B4Cp/6061Al复合材料的热变形及加工图的研究[J]. 金属学报, 2020, 56(8): 1155-1164.
[12] 刘天, 罗锐, 程晓农, 郑琦, 陈乐利, 王茜. 形成Al2O3表层的奥氏体不锈钢加速蠕变实验研究[J]. 金属学报, 2020, 56(11): 1452-1462.
[13] 李萍, 林泉, 周玉峰, 薛克敏, 吴玉程. W高压扭转显微组织演化过程TEM分析[J]. 金属学报, 2019, 55(4): 521-528.
[14] 吕钊钊,祖宇飞,沙建军,鲜玉强,张伟,崔鼎,严从林. 含Cu界面层碳纤维增强铝基复合材料制备工艺及其力学性能研究[J]. 金属学报, 2019, 55(3): 317-324.
[15] 程钊, 金帅, 卢磊. 电解液温度对直流电解沉积纳米孪晶Cu微观结构的影响[J]. 金属学报, 2018, 54(3): 428-434.