Please wait a minute...
金属学报  2011, Vol. 47 Issue (9): 1147-1152    DOI: 10.3724/SP.J.1037.2011.00270
  论文 本期目录 | 过刊浏览 |
光电化学法研究镍基合金在288℃高温水中生成氧化膜的半导体性质
张胜寒, 檀玉, 梁可心
华北电力大学环境科学与工程学院, 保定 071003
PHOTOELECTROCHEMICAL STUDY ON SEMICONDUCTOR PROPERTIES OF Ni-BASED ALLOYS OXIDE FILMS FORMED IN 288℃ HIGH TEMPERATURE WATER
ZHANG Shenghan, TAN Yu, LIANG Kexin
School of Environmental Science and Engineering, North China Electric Power University, Baoding 071003
引用本文:

张胜寒 檀玉 梁可心. 光电化学法研究镍基合金在288℃高温水中生成氧化膜的半导体性质[J]. 金属学报, 2011, 47(9): 1147-1152.
, , . PHOTOELECTROCHEMICAL STUDY ON SEMICONDUCTOR PROPERTIES OF Ni-BASED ALLOYS OXIDE FILMS FORMED IN 288℃ HIGH TEMPERATURE WATER[J]. Acta Metall Sin, 2011, 47(9): 1147-1152.

全文: PDF(1240 KB)  
摘要: 采用光电化学法研究了Incoloy800HT和Inconel600镍基合金在288℃高温水中形成的氧化膜的半导体性质. 组成镍合金氧化膜的物相为 Ni的氢氧化物或镍铁氧化物、Cr2O3和FexNi1-xCr2O4, 它们的特征带隙宽度分别为2.3, 2.9/3.5和4.1-4.3 eV. 在-400 mV至+400 mV范围内, Incoloy800HT合金表面氧化膜的光电化学响应表现为n型半导体性质, Inconel600合金表面氧化膜的光电化学响应表现为n/p型半导体性质, 同时, 在半导体性质从n型转变为p型的临界电压下, 光电化学响应相角发生180o转变.
关键词 光电化学响应镍基合金氧化膜半导体性质高温水    
Abstract:The oxide films formed on Ni-based alloys in high temperature water with semiconductor properties were investigated by photoelectrochemical responses. Two Ni-based alloys (Incoloy800HT and Inconel600) were corroded at 288℃ for 100 h in water, and four contributions from the photocurrent are obtained by photoelectrochemical responses. Band gap energy of 2.3 eV is attributed to the presence of nickel hydroxide or nickel-ferrite oxide. Band gap energy of 2.9 and 3.5 eV are attributed to Cr2O3 and band gap energy in the range of 4.1-4.3 eV is attributed to the spinel phase FexNi1-xCr2O4. In the photoelectrochemical responses in function of the applied potential tests, the oxide films on Incoloy800HT alloy indicate n type semiconductor in the potential range from -400 mV\linebreak to +400 mV, and the oxide films on Inconel600 alloy indicate n/p type semiconductor. In addition, the dephasing angle of the photoelectrochemical responses has a 180$^{\circ}$ evolution at the potential where the semiconductor of oxide film turns from n to p type.
Key wordsphotoelectrochemical response    Ni-based alloy    oxide film    semiconductor property    high temperature water
收稿日期: 2011-04-26     
ZTFLH: 

O646

 
基金资助:

国家自然科学基金项目50971059和中央高校基本科研业务费项目10QX42资助

作者简介: 张胜寒, 男, 1962年生, 教授
[1] Hamadou L, Kadri A, Benbrahim N, Petit J P. J Electrochem Soc, 2007; 154: 291

[2] Rangel C M, Silva T M, da Cunha Belo M. Electrochim Acta, 2005; 50: 5076

[3] Cheng Y F, Luo J L. Electrochim Acta, 1999; 44: 2947

[4] Schmuki P, B¨ohni H. J Electrochem Soc, 1992; 139: 1908

[5] Maurice V, YangWP, Marcus P. J Electrochem Soc, 1998; 145: 909

[6] Asami K, Hashimoto K, Shimodaira S. Corros Sci, 1978; 18: 151

[7] Sennour M, Marchetti L, Perrin S, Molins R, Pijolat M, Raquet O. Mater Sci Forum, 2008; 595: 539

[8] Sudensh T L, Wijesinghe L, Blackwood D J. Corros Sci, 2008; 50: 23

[9] Mac´ak J, Sajdl P, Kuˇcera P, Novotn´y R, Voˇsta J. Electrochim Acta, 2006; 51: 3566

[10] Carette F, Lafont M C, Chataignier G, Guinard L, Pieraggi B. Surf Interface Anal, 2002; 34: 135

[11] Carette F, Lafont M C, Guinard L, Pieraggi B. Mater High Temp, 2003; 20: 581

[12] Machet A, Galtayries A, Zanna S, Klein L, Maurice V, Jolivet P, Foucault M, Combrade P, Scott P, Marcus P. Electrochim Acta, 2004; 49: 3957

[13] Montemor M F, Ferreira M G, Hakiki N E, da Cunha Belo M D. Corros Sci, 2000; 42: 1635

[14] Fujimoto S, Chihara O, Shibata T. Mater Sci Forum, 1998; 289–292: 989

[15] Tsuchiya H, Fujimoto S, Chihara O, Shibata T. Electrochim Acta, 2002; 47: 4357

[16] Henry S, Mougin J,Wouters Y, Petit J P, Galerie A. Mater High Temp, 2000; 17: 231

[17] Calvarin G, Huntz A M, Molins R. Mater High Temp, 2000; 17: 257

[18] Balaji S, Kalai S R, John B L, Angappan S, Subramanian K, Augustin C O. Mater Sci Eng, 2005; B119: 119

[19] Sunseri O, Piazza S, Di Quarto F. J Electrochem Soc, 1990; 137: 2411

[20] Carpenter M K, Corrigan D A. J Electrochem Soc, 1989; 136: 1022

[21] Marchetti L, Perrin S, Raquet O, Pijolat M. Mater Sci Forum, 2008; 595–598: 529

[22] Marchetti L, Perrin S, Wouters Y, Martin F, Pijolat M. Electrochim Acta, 2010; 55: 5384

[23] Yves Marfaing. J Cryst Growth, 1996; 1–4: 205

[24] Sarrazin P, Galerie A, Fouletier J. Mechanisms of High Temperature Corrosion: A Kinetic Approach, Zurich: Trans Tech Publications Ltd., 2008, 488

[25] Macdonald D D. J Electrochem Soc, 1992; 139: 3434
[1] 韩恩厚, 王俭秋. 表面状态对核电关键材料腐蚀和应力腐蚀的影响[J]. 金属学报, 2023, 59(4): 513-522.
[2] 沈朝, 王志鹏, 胡波, 李德江, 曾小勤, 丁文江. 镁合金抗高温氧化机理研究进展[J]. 金属学报, 2023, 59(3): 371-386.
[3] 刘来娣, 丁彪, 任维丽, 钟云波, 王晖, 王秋良. DZ445镍基高温合金高温长时间氧化形成的多层膜结构[J]. 金属学报, 2023, 59(3): 387-398.
[4] 常立涛. 压水堆主回路高温水中奥氏体不锈钢加工表面的腐蚀与应力腐蚀裂纹萌生:研究进展及展望[J]. 金属学报, 2023, 59(2): 191-204.
[5] 徐文国, 郝文江, 李应举, 赵庆彬, 卢炳聿, 郭和一, 刘天宇, 冯小辉, 杨院生. 微量AlTiInconel 690合金高温氧化行为的影响[J]. 金属学报, 2023, 59(12): 1547-1558.
[6] 孙蓉蓉, 姚美意, 林晓冬, 张文怀, 仇云龙, 胡丽娟, 谢耀平, 杨健, 董建新, 成国光. 添加TiFe22Cr5Al3Mo合金在500℃过热蒸汽中腐蚀行为的影响[J]. 金属学报, 2022, 58(5): 610-622.
[7] 余春, 徐济进, 魏啸, 陆皓. 核级镍基合金焊接材料失塑裂纹研究现状[J]. 金属学报, 2022, 58(4): 529-540.
[8] 林晓冬, 马海滨, 任啟森, 孙蓉蓉, 张文怀, 胡丽娟, 梁雪, 李毅丰, 姚美意. Fe13Cr5Al4Mo合金在高温高压水环境中的腐蚀行为[J]. 金属学报, 2022, 58(12): 1611-1622.
[9] 王迪, 王栋, 谢光, 王莉, 董加胜, 陈立佳. Pt-Al涂层对一种镍基单晶高温合金抗热腐蚀行为的影响[J]. 金属学报, 2021, 57(6): 780-790.
[10] 余磊, 曹睿. 镍基合金焊接裂纹研究现状[J]. 金属学报, 2021, 57(1): 16-28.
[11] 钱月,孙蓉蓉,张文怀,姚美意,张金龙,周邦新,仇云龙,杨健,成国光,董建新. NbFe22Cr5Al3Mo合金显微组织和耐腐蚀性能的影响[J]. 金属学报, 2020, 56(3): 321-332.
[12] 华涵钰,谢君,舒德龙,侯桂臣,盛乃成,于金江,崔传勇,孙晓峰,周亦胄. W含量对一种高W镍基高温合金显微组织的影响[J]. 金属学报, 2020, 56(2): 161-170.
[13] 李克俭, 张宇, 蔡志鹏. 异种金属焊接接头在热-力耦合作用下的断裂位置转移机理[J]. 金属学报, 2020, 56(11): 1463-1473.
[14] 包飞洋, 李艳芬, 王光全, 张家榕, 严伟, 石全强, 单以银, 杨柯, 许斌, 宋丹戎, 严明宇, 魏学栋. ODS钢在600700 ℃静态Pb-Bi共晶中的腐蚀行为及机理[J]. 金属学报, 2020, 56(10): 1366-1376.
[15] 王资兴,黄烁,张北江,王磊,赵光普. 高合金化GH4065镍基变形高温合金点状偏析研究[J]. 金属学报, 2019, 55(3): 417-426.