Please wait a minute...
金属学报  2011, Vol. 47 Issue (9): 1141-1146    DOI: 10.3724/SP.J.1037.2011.00266
  论文 本期目录 | 过刊浏览 |
含等离子喷涂ZrO2热障涂层的Ti3XC2(X=Al, Si)性能研究
刘静, 盛洪飞, 张保山, 彭良明
中国科学技术大学工程科学学院近代力学系, 合肥 230026
PROPERTIES OF Ti3XC2(X=Al, Si) WITH PLASMA SPRAYED ZrO2 THERMAL BARRIER COATING
LIU Jing, SHENG Hongfei, ZHANG Baoshan, PENG Liangming
School of Engineering Science, University of Science and Technology of China, Hefei 230026
引用本文:

刘静 盛洪飞 张保山 彭良明. 含等离子喷涂ZrO2热障涂层的Ti3XC2(X=Al, Si)性能研究[J]. 金属学报, 2011, 47(9): 1141-1146.
, , , . PROPERTIES OF Ti3XC2(X=Al, Si) WITH PLASMA SPRAYED ZrO2 THERMAL BARRIER COATING[J]. Acta Metall Sin, 2011, 47(9): 1141-1146.

全文: PDF(2343 KB)  
摘要: 在1450 ℃真空下保温1.5 h进行热压反应烧结制备了纯度为90%以上的Ti3AlC2和Ti3SiC2层状结构陶瓷, 研究了它们的物相组成、微观结构、力学性能及热物理特性, 并在2种陶瓷基体上进行了无金属粘结过渡层等离子喷涂ZrO2 热障涂层处理, 考察了涂层的结合强度与热冲击特性. 结果表明, Ti3AlC2和Ti3SiC2基体材料的抗弯强度和断裂韧性分别为536 MPa, 7.8 MPa·m1/2和457 MPa, 6.8 MPa·m1/2, 在25-1000 ℃温度范围内的平均线膨胀系数分别为8.77×10-6和9.14×10-6/℃, 前者的力学性能与热稳定性均优于后者; 等离子喷涂后, 整体材料的热导率下降幅度达60%以上, 涂层与基体结合牢固且具有良好的抗热冲击特性; 对2种基体的涂层隔热效应的计算表明, 0.3 mm厚ZrO2涂层外表面与内界面的温差分别为341和358 ℃, 可显著提高工件的使用温度.
关键词 Ti3XC2(X=Al, Si)力学性能热物理特性ZrO2涂层等离子喷涂    
Abstract:There has been a great interest in the synthesis and characterization of Ti3AlC2 and Ti3SiC2 lamellar ceramics due to their striking combination of merits of both metals and ceramics, such as good high-temperature strength, excellent oxidation resistance. In this study, dense and high purity polycrystalline Ti3AlC2 and Ti3SiC2 lamellar ceramics were prepared from Ti, Al(Si) and C powders by reactive hot pressing in vacuum at 1450 ℃ for 1.5 h under 30 MPa. Their phase constitution, mechanical characterization and thermal properties were investigated. In addition, plasma-sprayed monolayer ZrO2 thermal barrier coatings free of metallic transition layer were prepared on the two ceramic substrates. The purity of the Ti3AlC2 and Ti3SiC2 were 91.5% and 90.3%, and the main impurity was TiC. The flexural strength and fracture toughness were 536 MPa, 7.8 MPa·m1/2 and 457 MPa, 6.8 MPa·m1/2 for Ti3AlC2 and Ti3SiC2, respectively. They took a respective average value of 8.77×10-6 and 9.14×10-6/℃ for the coefficient of thermal expansion (CTE) without remarkable temperature dependence between 25 and 1000℃. Furthermore, the coatings contributed to a more than 60\% decrease in the high temperature thermal conductivity compared to the two matrices. In general, Ti3AlC2 and ZrO2-coated Ti3AlC2 displayed superior comprehensive properties to Ti3SiC2 and ZrO2-coated Ti3SiC2. The temperature differences between the outside surface and the coating/matrix interfaces created by the thermal barrier coating were calculated to be 341 and 358 ℃ for Ti3AlC2 and Ti3SiC2 substrate, respectively.
Key wordsTi3XC2(X=Al, Si)    mechanical property    thermal-physical property    ZrO2 coating    plasma spraying
收稿日期: 2011-04-25     
ZTFLH: 

A

 
基金资助:

新世纪优秀人才支持计划项目资助NCET--07--0790

作者简介: 刘静, 女, 1988年生, 博士生
[1] Barsoum M W. Prog Solid State Chem, 2000; 28: 201

[2] Whittle K R, Blackford M G, Aughterson R D, Moricca S, Lumpkin G R, Riley D P, Zaluzec N J. Acta Mater, 2010; 56: 4362

[3] Zhang H B, Bao Y W, Zhou Y C. J Mater Sci Technol, 2009; 25: 1

[4] Luo Y M, Li S Q, Pan W, Chen J, Wang R G. J Mater Sci, 2004; 39: 3137

[5] Benko E, Klimczyk P, Mackiewicz S, Barr T L, Piskorska E. Diamond Relat Mater, 2004; 13: 521

[6] Yang J, GuW, Pan L M, Zhang X M, Qiu T, Zhu S M. J Chin Ceram Soc, 2011; 39: 223

(杨建, 顾巍, 潘丽梅, 张小敏, 丘 泰, 祝社民. 硅酸盐学报, 2011; 39: 223)

[7] Chen J X, Zhou Y C. Scr Mater, 2004; 50: 897

[8] Peng L M. J Am Ceram Soc, 2007; 90: 1312

[9] Peng L M. Scr Mater, 2007; 56: 729

[10] Finkel P, Barsoum M W, Elraghy T. J Appl Phys, 2000; 87: 1701

[11] Barsoum M W, Tzenov N V, Procopio A, El–Raghy T, Ali M. J Electrochem Soc, 2001; 148: C551

[12] Mei B C, Xu X W, Zhu J Q, Liu J. Chin J Nonferrous Met, 2004; 14: 772

(梅炳初, 徐学文, 朱教群, 刘俊. 中国有色金属学报, 2004; 14: 772)

[13] Wang Z G, Zhu D G. Bull Chin Ceram Soc, 2006; 25(4): 6

(王志钢, 朱德贵. 硅酸盐通报, 2006; 25(4): 6)

[14] Zhao Z L, Feng X M, Ai T T. Bull Chin Ceram Soc, 2011; 30(1): 65

(赵卓玲, 冯小明, 艾桃桃. 硅酸盐通报, 2011; 30(1): 65)

[15] Padture N P, Gell M, Jordan E H. Science, 2002; 296: 280

[16] Maricocchi A, Bartz A, Wortman D. J Therm Spray Technol, 1997; 6: 193

[17] Riley D P, Kisi E H, Hansen T C, Hewat A W. J Am Ceram Soc, 2002; 85: 2417

[18] Zhou Y C, Sun Z M. Mater Res Innovations, 2000; 3: 286

[19] Lis J, Miyamoto Y, Pampuch R. Mater Lett, 1995; 22: 163

[20] Pietzka M A, Schuster J C. J Phase Equilib Diffns, 1994; 15: 392

[21] Wang X H, Zhou Y C. Acta Mater, 2002; 50: 3141

[22] Zhou A G, Wang C A, Huang Y. J Mater Sci, 2003; 38: 3111

[23] Zhou Y C, Sun Z M, Chen S Q, Zhang Y M. Mater Res Innovations, 1998; 2: 142

[24] Qu Y F. Modern Ceramics and Technologies. Shanghai: East China University of Science and Technology Press, 2008: 31

(曲远方. 现代陶瓷及其技术. 上海: 华东理工大学出版社, 2008: 31)

[25] Khan A, Chan H M, Harmer M P. J Am Ceram Soc, 2000; 83: 833

[26] Barsoum M W, Rawn C J, Elraghy T, Procopio, Porter W D, Wang H, Hubbard C R. J Appl Phys, 2000; 87: 8407

[27] Barsoum M W, Elraghy T, Rawn C J, Porter W D, Wang H, Payzant E A, Hubbard C R. J Phys Chem Sol, 1999; 60: 429

[28] Zhang L T, Wu J S. Scr Mater, 1998; 38: 307

[29] Schilichting K W, Padture N P, Llemens P G. J Mater Sci, 2001; 36: 3003

[30] Shao S Y, Fan Z X, Shao J D. Acta Phys Sin, 2005; 54: 3312

(邵淑英, 范正修, 邵建达. 物理学报, 2005; 54: 3312)

[31] Li Q L. China Surf Eng, 2004; 66(3): 17

(李其连. 中国表面工程, 2004; 66(3): 17)

[32] Zhang H S,Wang F C, Ma Z,Wang Q S, XianWF, Cheng Z F. Mater Mech Eng, 2007; 31: 86

(张红松, 王富耻, 马壮, 王全胜, 冼文峰, 成志芳. 机械工程材料, 2007; 31: 86)

[33] Dai G S. Thermal Transfer Theory. Beijing: Higher Education Press, 1998: 32

(戴锅生. 传热学. 北京: 高等教育出版社, 1998: 32)

[34] Gong S K, Deng L, Bi X F, Xu H B. Acta Aeronaut Astronaut Sin, 2000; 21: s25

(宫声凯, 邓亮, 毕晓方, 徐惠彬. 航空学报, 2000; 21: s25)
[1] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[2] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[3] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[4] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[5] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[6] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[7] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[8] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[9] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[10] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[11] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[12] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[13] 李述军, 侯文韬, 郝玉琳, 杨锐. 3D打印医用钛合金多孔材料力学性能研究进展[J]. 金属学报, 2023, 59(4): 478-488.
[14] 吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.
[15] 王虎, 赵琳, 彭云, 蔡啸涛, 田志凌. 激光熔化沉积TiB2 增强TiAl基合金涂层的组织及力学性能[J]. 金属学报, 2023, 59(2): 226-236.