Please wait a minute...
金属学报  2011, Vol. 47 Issue (9): 1123-1128    DOI: 10.3724/SP.J.1037.2011.00252
  论文 本期目录 | 过刊浏览 |
半固态SCN-5H2O模型合金流变性与组织特征的耦合分析研究
王红艳, 林鑫, 王理林, 马良, 杨东辉, 黄卫东
西北工业大学凝固技术国家重点实验室, 西安 710072
COUPLING EFFECT ON RHEOLOGY AND MICROSTRUCTURE OF SEMI-SOLID SCN-5H2O MODEL ALLOY
WANG Hongyan, LIN Xin, WANG Lilin, MA Liang, YANG Donghui, HUANG Weidong
State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072
引用本文:

王红艳 林鑫 王理林 马良 杨东辉 黄卫东. 半固态SCN-5H2O模型合金流变性与组织特征的耦合分析研究[J]. 金属学报, 2011, 47(9): 1123-1128.
, , , , , . COUPLING EFFECT ON RHEOLOGY AND MICROSTRUCTURE OF SEMI-SOLID SCN-5H2O MODEL ALLOY[J]. Acta Metall Sin, 2011, 47(9): 1123-1128.

全文: PDF(1953 KB)  
摘要: 采用旋转流变仪研究了剪切速率和不同工艺(连续冷却和重熔加热)对半固态SCN-5H2O(摩尔分数, %)透明模型合金流变性与微观组织的耦合影响规律. 结果表明, 剪切速率的跃变升高会导致合金熔体的表观黏度呈现出暂态的剪切稠化和稳态剪切稀化现象. 而随着剪切速率的增加, 相应的组织呈现出非枝晶颗粒尺度逐渐减小, 团聚体的分布更加分散的特征, 但微观组织的形状因子随剪切速率变化不大. 半固态合金熔体在重熔加热过程中的微观组织比连续冷却过程所获得的组织, 颗粒尺度更大、形状因子略有减小, 同时, 团聚体的聚合作用更加强烈, 这也导致合金熔体在重熔加热过程中的表观黏度高于连续冷却过程所获得的数值.
关键词 半固态加工流变性表观黏度 微观组织    
Abstract:The most important characteristic of semi-solid processing is that the solidification microstructure changes markedly from dendritic growth under traditional conditions to non-dendritic or globular growth, which results in apparent viscosity greatly reduction. In another hand, semi-solid slurry shows admirable fluidity compared with traditional processing slurry. With the intensive development of semi-solid meta1 processing technology, the interaction between melt flow and solidification microstructure becomes gradually one of the important fundamental research fields in materials science. In the previous work, it is very difficult to measure apparent viscosity and observe microstructure of semi-solid simultaneity using opaque metal materials. Conclusions of rheological behavior and microstructure evolution in semi-solid processing can be drawn qualitatively. Because of the metal materials not transparency and the researches on microstructure only after quenching, it is difficult to measure rheological behavior and observe dynamic microstructure evolution simultaneously. Therefore, it is also hard to grasp the coupling effect on rheology and microstructure of semi-solid alloy, which has affected the understanding and controlling accurately on solid forming process. In present paper, the coupling effect of shear rate and the processing (continuous cooling and remelted) processes on the rheology and microstructure of semi-solid SCN-5H2O (molar fraction, %) transparent model alloys were investigated using rotating viscometer. It is found that the increase of shear rate will lead the apparent viscosity of the semi-solid alloy to present a transient shear-thickening and steady shear-thinning behavior, correspondingly, the size of non-dendritic microstructure decreases and the distribution of aggregate becomes more disperse with increasing the shear rate, while, the shape factor of the non-dendritic microstructure changes little; a larger particle size and slightly lower shape factor for non-dendritic microstructure were obtained in the semi-solid alloy slurry made by re-melted process on comparison with that by continuous cooling process, meanwhile, the aggregation of the aggregates becomes stronger, which also results in that the apparent viscosity of the semi-solid alloy slurry made by re-melted process is larger than that by continuous cooling process.
Key wordssemi-solid processing    rheology    apparent viscosity    microstructure
收稿日期: 2011-04-19     
ZTFLH: 

TG244

 
基金资助:

国家自然科学基金项目50771083和国家重点基础研究发展计划项目2011CB610402和凝固技术国家重点实验室自主研究课题项目02-TZ-2008资助

作者简介: 王红艳, 女, 1985年生, 硕士生
[1] Fan Z. Int Mater Rev, 2002; 47: 49

[2] Flemings M C. Metall Trans, 1991; 22B: 957

[3] Mao W M. Semi–Solid Forming of Metals. Beijing: China Machine Press, 2004: 4

(毛卫民. 半固态金属成形技术. 北京: 机械工业出版社, 2004: 4)

[4] Li T, Huang W D, Lin X. Chin J Nonferrous Met, 2000; 10: 635

(李涛, 黄卫东, 林 鑫. 中国有色金属学报, 2000; 10: 635)

[5] Turng L S, Wang K K. J Mater Sci, 1991; 26: 2173

[6] Spencer D B, Mehrabian R, Flemings M C. Metall Trans, 1972; 3: 1925

[7] Liu T Y, Atkinson H V, Ward P J, Kirkwood D H. Metall Mater Trans, 2003; 34A: 409

[8] Martinez R A, Karma A, Flemings M C. Metall Mater Trans, 2006; 37A: 2807

[9] Jackson K A. In: Doremus R H, Roberts B W, Turnbull D eds., Proc of Int Conf Crystal Growth, New York: John Wiley&Sons Inc., 1958: 319

[10] Kauerauf B, Zimmermann G, Murmann L, Rex S. Cryst Growth, 1998; 193: 702

[11] Li T. PhD Thesis, Xi’an: Northwestern Polytechnical University, 2003

(李涛. 西北工业大学博士学位论文. 西安, 2003)

[12] Trivedi R, KurzW. Int Mater Rev, 1994; 39: 49

[13] Boettinger W J, Coriell S R, Greer A L, Karmaa A, Kurz W, Rappaz M, Trivedi R. Acta Mater, 2000; 48: 43

[14] Asta M, Beckermann C, Karma A, Kurz W, Napolitano R, Plapp M, Purdy G, Rappaz M, Trivedi R. Acta Mater, 2009; 57: 941

[15] Chen H Z. Viscosity Measurement. 2nd Ed., Beijing: China Metrology Publishing House, 1994: 289

(陈惠钊. 粘度测量. 北京: 中国计量出版社, 1994: 289)

[16] Joly P A, Mehrabian R. Mater Sci, 1976; 11: 1393

[17] Kurz W, Fisher D J. Fundamentals of Solidification. 4th Ed., Switzerland: Trans Tech Publications, 1998: 125

[18] Modigell M, Koke J. Mech Time–Depend Mater, 1999; 3: 15

[19] Mao W M, Run S J, Zhen Z S, Zhong X Y. Acta Metall Sin, 2005; 41: 191

(毛卫民, 闰时建, 甄子胜, 钟雪友. 金属学报, 2005; 41: 191)
[1] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[2] 刘兴军, 魏振帮, 卢勇, 韩佳甲, 施荣沛, 王翠萍. 新型钴基与Nb-Si基高温合金扩散动力学研究进展[J]. 金属学报, 2023, 59(8): 969-985.
[3] 冯艾寒, 陈强, 王剑, 王皞, 曲寿江, 陈道伦. 低密度Ti2AlNb基合金热轧板微观组织的热稳定性[J]. 金属学报, 2023, 59(6): 777-786.
[4] 王长胜, 付华栋, 张洪涛, 谢建新. 冷轧变形对高性能Cu-Ni-Si合金组织性能与析出行为的影响[J]. 金属学报, 2023, 59(5): 585-598.
[5] 李民, 王继杰, 李昊泽, 邢炜伟, 刘德壮, 李奥迪, 马颖澈. Y对无取向6.5%Si钢凝固组织、中温压缩变形和软化机制的影响[J]. 金属学报, 2023, 59(3): 399-412.
[6] 王虎, 赵琳, 彭云, 蔡啸涛, 田志凌. 激光熔化沉积TiB2 增强TiAl基合金涂层的组织及力学性能[J]. 金属学报, 2023, 59(2): 226-236.
[7] 唐伟能, 莫宁, 侯娟. 增材制造镁合金技术现状与研究进展[J]. 金属学报, 2023, 59(2): 205-225.
[8] 李会朝, 王彩妹, 张华, 张建军, 何鹏, 邵明皓, 朱晓腾, 傅一钦. 搅拌摩擦增材制造技术研究进展[J]. 金属学报, 2023, 59(1): 106-124.
[9] 卢海飞, 吕继铭, 罗开玉, 鲁金忠. 激光热力交互增材制造Ti6Al4V合金的组织及力学性能[J]. 金属学报, 2023, 59(1): 125-135.
[10] 马志民, 邓运来, 刘佳, 刘胜胆, 刘洪雷. 淬火速率对7136铝合金应力腐蚀开裂敏感性的影响[J]. 金属学报, 2022, 58(9): 1118-1128.
[11] 高栋, 周宇, 于泽, 桑宝光. 液氮温度下纯Ti动态塑性变形中的孪晶变体选择[J]. 金属学报, 2022, 58(9): 1141-1149.
[12] 沈岗, 张文泰, 周超, 纪焕中, 罗恩, 张海军, 万国江. 热挤压Zn-2Cu-0.5Zr合金的力学性能与降解行为[J]. 金属学报, 2022, 58(6): 781-791.
[13] 余春, 徐济进, 魏啸, 陆皓. 核级镍基合金焊接材料失塑裂纹研究现状[J]. 金属学报, 2022, 58(4): 529-540.
[14] 何焕生, 余黎明, 刘晨曦, 李会军, 高秋志, 刘永长. 新一代马氏体耐热钢G115的研究进展[J]. 金属学报, 2022, 58(3): 311-323.
[15] 徐流杰, 宗乐, 罗春阳, 焦照临, 魏世忠. 难熔高熵合金的强韧化途径与调控机理[J]. 金属学报, 2022, 58(3): 257-271.