Please wait a minute...
金属学报  2011, Vol. 47 Issue (6): 688-696    DOI: 10.3724/SP.J.1037.2011.00059
  论文 本期目录 | 过刊浏览 |
Ti和Nb微合金化对超纯11%Cr铁素体不锈钢组织的影响
刘静,罗兴宏,胡小强,刘实
中国科学院金属研究所, 沈阳 110016
EFFECT OF Ti AND Nb MICRO–ALLOYING ON THE MICROSTRUCTURE OF THE ULTRA–PURIFIED 11%Cr FERRITE STAINLESS STEELS
LIU Jing, LUO Xinghong, HU Xiaoqiang, LIU Shi
Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
引用本文:

刘静 罗兴宏 胡小强 刘实. Ti和Nb微合金化对超纯11%Cr铁素体不锈钢组织的影响[J]. 金属学报, 2011, 47(6): 688-696.
, , , . EFFECT OF Ti AND Nb MICRO–ALLOYING ON THE MICROSTRUCTURE OF THE ULTRA–PURIFIED 11%Cr FERRITE STAINLESS STEELS[J]. Acta Metall Sin, 2011, 47(6): 688-696.

全文: PDF(4086 KB)  
摘要: 结合实验研究和热力学计算对不同间隙元素含量下Ti和Nb微合金化对超纯11%Cr铁素体不锈钢铸态、轧态和焊接热影响区(HAZ)的影响进行了研究和分析. 研究结果表明: 钢中间隙元素含量在0.0163%时Ti和Nb微合金化效果较好, 在相同的轧制工艺下可获得更好的轧态组织,相同焊接工艺条件下HAZ晶粒尺寸也较细小. 分析表明: 在相同的凝固条件下,随着C和N含量的提高及Ti和Nb的加入, 固/液两相区温度 区间增大,有助于提高柱状晶前沿过冷度, 提高非均质形核几率,进而使得铸态组织中等轴晶比例提高, 晶粒尺寸减小. 另一方面,随着Ti的加入和N含量的提高, TiN生成区域从固相区提高到固/液两相区,有助于促进高温铁素体的非均质形核.
关键词 超纯铁素体不锈钢微合金化 铸态组织 等轴化 间隙元素 Ti和Nb稳定化    
Abstract:Ultra–purified ferrite stainless steels (UP–FSS) are widely used in the fields of automobile, household appliances etc. Much better performance than conventional ferrite stainless steels is obtained by minimizing the interstitial elements level in UP–FSS. However, some negative effects, such as degradation of the formability and ridging–resistance, are also brought by purifying the steels, which lead to abnormally growth of the columnar grains. Moreover, the grains in heat affected zone (HAZ) are apt to coarsen during welding process. One of the effective ways to resolve such problems is to increase the equiaxial grain ratio in as–cast microstructure and refine the grain size. Micro–alloying of steels with strong carbide and nitride former, such as Ti and Nb, is a way to do that. In this work, the effects of Ti and Nb micro–alloying on the as–cast, as–rolled, and HAZ microstructures of the ultrapurified 11%Cr ferrite stainless steels with different interstitial element levels were investigated by both experimental research and thermodynamic calculation. The results indicated that the effect of Ti and Nb micro–alloying was better when the content of C and N in the steel was 0.0163%, which showed the minimum grain size in as–cast, as–rolled, and HAZ microstructures, and the equiaxial grain ratio in as–cast microstructure was evidently improved as well. It was found by calculation that, with increasing of C and N content and addition of Ti and Nb to the steels, the solid–liquid two–phase region was broadened. This was beneficial to increase the undercooling in front of the liquid–solid interface and the probability of heterogeneous nucleation, and consequently, increase the equiaxial grain ratio and decrease te mean grain size in as–cast microstructure. On the other hand, with addition of Ti and increase of N conent, TiN type particles might precipitate in olid–liquid two–phase regio, which was helpful for promoting the heterogeneous nucleation of δ ferrite.
Key wordsas-cast structure    equiaxed    interstitial element    Ti and Nb stabilization
收稿日期: 2011-01-24     
基金资助:

国家自然科学基金资助项目50734002

作者简介: 刘静, 女, 1986年生, 硕士生
[1] Meng F M, Fu J Y. Modern Niobium Containing Stainless Steels. Beijing: Metallurgical Industry Press, 2004: 99

(孟繁茂, 付俊岩. 现代含铌不锈钢. 北京:冶金工业出版社, 2004: 99)

[2] Yazawa Y, Kato Y, Kobayashi M. Kawasaki Steel Tech Rep, 1999; 40: 23

[3] Hamada J, Matsumoto, Fudanoki F, Maeda S. ISIJ Int, 2003; 3: 12

[4] Park S H, Kim K Y, Lee Y D, Park C G. ISIJ Int, 2002; 42: 100

[5] Tsuj N, Tsuzaki K, Make T. ISIJ Int, 1994; 34: 1008

[6] Shan Y T. Master Dissertation, Chinese Academy of Sciences, Shenyang, 2010

(单亚廷. 中国科学院硕士学位论文, 沈阳, 2010)

[7] Qi J J, Huang Y H, Zhang Y. Microalloyed Steels. Beijing: Metallurgical Industry Press, 2006: 2

(齐俊杰, 黄运华, 张 跃. 微合金化钢. 北京: 冶金工业出版社, 2006: 2)

[8] Shi X F, Cheng G G, Shi C X, Zhao P. In: The Chinese Society for Metals ed., CSM 2007 Annual Meeting Proceedings, Beijing: Metallurgical Industry Press, 2007: 15

(施晓芳, 成国光, 史彩霞, 赵沛. 见: 中国金属学会主编, 2007中国钢铁年会论文集, 北京: 冶金工业出版社, 2007: 15)

[9] DeArdo A J. In: Zhang H T,Wang R Z, Pang G Y eds., Nb Containing Steels and Nb Alloys—China & Brazil Symposium Proceedings, Beijing: Metallurgical Industry Press, 2000: 109

(DeArdo A J. 见: 章洪涛, 王瑞珍, 庞干云主编, 铌钢和铌合金-中国&巴西学术研讨会, 北京: 冶金工业出版社, 2000: 109)

[10] Sato K, Ishiguro Y. In: The Iron and Steel Institute of Japan ed., International Forum for Physical Metallurgy of IF Steels, Tokyo: ISIJ, 1994; 45

[11] Hua M, Garcia C I, DeArdo A J. Scr Mater, 1993; 28: 973

[12] Tither G, Garcia C I, Hua M, DeArdo A J. In: The Iron and Steel Institute of Japan ed., International Forum for Physical Metallurgy of IF Steels, Tokyo: ISIJ, 1994; 293

[13] Fujita N, Ohmura K, Kikuchi M. Scr Mater,1996; 35: 705

[14] Xu H, Xu L D, Zhang S J, Han Q. Scr Mater, 2006; 54: 2191

[15] Yong Q L. Secondary Phases in Steels. Beijing: Metallurgical Industry Press, 2006: 93

(雍岐龙. 钢铁材料中的第二相. 北京: 冶金工业出版社, 2006: 93)

[16] Wang J X, Huang J R, Lin J S. Fundamentals and Control of Metal Solidification. Beijing: China Machine Press, 1983: 180

(王家昕, 黄积荣, 林建生. 金属的凝固及其控制. 北京: 机械工业出版社, 1983: 180)

[17] Hunt J D. Mater Sci Eng, 1984; 65: 75

[18] Lippold J C, Kotecki D J, translated by Chen J H.Welding Metallurgy and Weldability of Stainless Steels. Beijing: China Machine Press, 2008: 81

(Lippold J C, Kotecki D J著, 陈剑虹译. 不锈钢焊接冶金学及焊接性. 北京: 机械工业出版社, 2008: 81)
[1] 陈继林, 冯光宏, 马洪磊, 杨栋, 刘维. Cr-Mo微合金冷镦钢的显微组织、力学性能及强化机制[J]. 金属学报, 2022, 58(9): 1189-1198.
[2] 郑秋菊, 叶中飞, 江鸿翔, 卢明, 张丽丽, 赵九洲. 微合金化元素La对亚共晶Al-Si合金凝固组织与力学性能的影响[J]. 金属学报, 2021, 57(1): 103-110.
[3] 孙新军,刘罗锦,梁小凯,许帅,雍岐龙. 高钛耐磨钢中TiC析出行为及其对耐磨粒磨损性能的影响[J]. 金属学报, 2020, 56(4): 661-672.
[4] 耿遥祥, 王英敏. 铁基非晶合金局域结构与性能关联:基于微合金化机理研究[J]. 金属学报, 2020, 56(11): 1558-1568.
[5] 黎旺,孙倩,江鸿翔,赵九洲. Al-Bi合金凝固过程及微合金化元素Sn的影响[J]. 金属学报, 2019, 55(7): 831-839.
[6] 惠亚军, 潘辉, 刘锟, 李文远, 于洋, 陈斌, 崔阳. 600 MPa级Nb-Ti微合金化高成形性元宝梁用钢的强化机制[J]. 金属学报, 2017, 53(8): 937-946.
[7] 惠亚军,潘辉,李文远,刘锟,陈斌,崔阳. 1000 MPa级Nb-Ti微合金化超高强度钢加热制度研究[J]. 金属学报, 2017, 53(2): 129-139.
[8] 李劲风,刘丹阳,郑子樵,陈永来,张绪虎. Er微合金化对2055 Al-Li合金微观组织及力学性能的影响*[J]. 金属学报, 2016, 52(7): 821-830.
[9] 张正延,孙新军,雍岐龙,李昭东,王振强,王国栋. Nb-Mo微合金高强钢强化机理及其纳米级碳化物析出行为*[J]. 金属学报, 2016, 52(4): 410-418.
[10] 方智,李静媛,陈雨来,江来珠,杜伟. 17%Cr超纯铁素体不锈钢不同方向拉伸起皱的研究*[J]. 金属学报, 2016, 52(1): 33-40.
[11] 丁贤飞,刘东方,郑运荣,冯强. B微合金化对HK40合金铸造疏松的影响[J]. 金属学报, 2015, 51(9): 1121-1128.
[12] 杨滨, 李鑫, 罗文东, 李宇翔. 微量添加Sn和Nb对Zr-Cu-Fe-Al块体非晶合金热稳定性和塑性的影响[J]. 金属学报, 2015, 51(4): 465-472.
[13] 惠亚军,潘辉,周娜,李瑞恒,李文远,刘锟. 650 MPa级V-N微合金化汽车大梁钢强化机制研究*[J]. 金属学报, 2015, 51(12): 1481-1488.
[14] 骆宗安, 刘纪源, 冯莹莹, 彭文. 超快速连续退火对低Si系Nb-Ti微合金化TRIP钢组织和力学性能的影响*[J]. 金属学报, 2014, 50(5): 515-523.
[15] 吴斯, 李秀程, 张娟, 尚成嘉. Nb对中碳钢相变和组织细化的影响*[J]. 金属学报, 2014, 50(4): 400-408.