Please wait a minute...
金属学报  2011, Vol. 47 Issue (9): 1099-1104    DOI: 10.3724/SP.J.1037.2011.00050
  论文 本期目录 | 过刊浏览 |
枝晶生长的三维元胞自动机模拟
赵九洲, 江鸿翔
中国科学院金属研究所, 沈阳 110016
A THREE-DIMENSIONAL CELLULAR AUTOMATON SIMULATION FOR DENDRITIC GROWTH
JIANG Hongxiang, ZHAO Jiuzhou
Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
引用本文:

赵九洲 江鸿翔. 枝晶生长的三维元胞自动机模拟[J]. 金属学报, 2011, 47(9): 1099-1104.
, . A THREE-DIMENSIONAL CELLULAR AUTOMATON SIMULATION FOR DENDRITIC GROWTH[J]. Acta Metall Sin, 2011, 47(9): 1099-1104.

全文: PDF(1975 KB)  
摘要: 通过将元胞自动机和有限差分方法相耦合, 建立了立方体系金属和合金枝晶生长的三维模型. 应
用该模型, 模拟了Al-Cu合金过冷熔体中自由枝晶的生长和定向凝固条件下Al-Cu合金凝固组织演变过程.
模拟结果清楚展现了过冷熔体中自由枝晶的生长过程和定向凝固过程中枝晶的形成与淹没, 与理论预测和
实验结果相吻合, 表明所发展的模型能够较准确地描述立方体系金属和合金的凝固组织演变过程.
关键词 枝晶生长三维元胞自动机枝晶间距    
Abstract:Perhaps dendrite is the most observed solidification microstructure of many metallic materials. The dendritic morphologies show a dominating effect on the performance of casting products. A lot of work has been carried out to investigate the formation mechanism of dendritic microstructure. It is found that the development of dendritic microstructures is a complicated process controlled by the interplay of many factors such as thermal and solute transfer, capillary $etc$. Cellular automaton (CA) can simulate the solidification process with a high computational efficiency, thus, attracts great attentions. In recent years, progress has been made on the two dimensional CA models for the solidification microstructure formation. But up to date researches on three dimensional CA model are very limited. A combined cellular automaton-finite difference (CA-FD) model for the three dimensional simulation of dendritic growth was developed in this paper. Simulations were performed to investigate the dendritic growth in an undercooled Al-Cu alloy as well as in a directionally solidified Al-Cu alloy. The numerical results showed clearly the development of the free dendrite in the undercooled melt and the microstructure evolution in the directionally solidified alloy and agreed well with the theoretical predictions and the experimental results.
Key wordsdendritic growth    three dimensional cellular automaton    dendritic spacing
收稿日期: 2011-01-20     
基金资助:

国家自然科学基金项目u0837601, 51071159和51031003资助

作者简介: 江鸿翔, 男, 1988年生, 硕士生
[1] Boettinger W J, Coriell S R, Greer A L, Karma A, Kurz W, Rappaz M, Trivedi R. Acta Mater, 2000; 48: 43

[2] Gaumann M, Trivedi R, Kurz W. Mater Sci Eng, 1997; A226–228: 763

[3] Liu Z Y, Xu Q Y, Liu B C. J Tsinghua Univ (Sci Tech), 2007; 47: 1253

(刘志勇, 许庆彦, 柳百成. 清华大学学报(自然科学版), 2007; 47: 1253)

[4] Rappaz M, Gandin Ch A. Acta Mater, 1993; 41: 345

[5] Gandin Ch A, Desbiolles J L, Rappaz M. Metall Mater Trans, 1999; 30A: 3153

[6] Pan S Y, Zhu M F. Acta Phys Sin, 2009; 58: S278

(潘诗琰, 朱鸣芳. 物理学报, 2009; 58: S278)

[7] Gandin Ch A, Rappaz M. Acta Mater, 1994; 42: 2233

[8] Zhu M F, Hong C P. ISIJ Int, 2001; 41: 436

[9] Zhu M F, Lee S Y, Hong C P. Phys Rev, 2004; 69E: 1

[10] Spittle A, Brown S G R. J Mater Sci, 1995; 30: 3989

[11] Dong H B, Lee P D. Acta Mater, 2005; 53: 659

[12] Gandin Ch A, Rappaz M. Acta Mater, 1997; 45: 2187

[13] Wang W, Lee P D, McLean M. Acta Mater, 2003; 51: 2971

[14] Xu L, Guo H M, Yang X J. Foundry, 2005; 54: 575

(许林, 郭洪民, 杨湘杰. 铸造, 2005; 54: 575)

[15] Pan S Y, Zhu M F. Acta Mater, 2010; 58: 340

[16] Steinbach I. Acta Mater, 2008; 56: 4965

[17] Nastac L. Acta Mater, 1999; 47: 4253

[18] Beckermann C, Diepers H J, Steinbach I, Karma A, Tong X. J Comput Phys, 1999; 154: 468

[19] Wheeler A A, Boettinger W J, McFadden G B. Phys Rev, 1992; 45A: 7424

[20] Beltran–Sanchez L, Stefanescu D M. Metall Mater Trans, 2004; 35A: 2471

[21] Hu H Q. Theories of Metal Solidification. 2nd Ed. Beijing: Mechanical Industry Press, 2000: 110

(胡汉起. 金属凝固原理. 第二版. 北京: 机械工业出版社, 2000: 110)

[22] Scheil E. Z Metallk, 1942; 34: 70

[23] Huang W D, Geng X G, Zhou Y H. J Cryst Growth, 1993; 134: 105

[24] Lin X, Huang W, Feng J, Li T, Zhou Y. Acta Mater, 1999; 47: 3271

[25] ¨Ust¨un E, C¸ad?rl? E, Kaya H. J Phys, 2006; 18: 7825

[26] Hunt J D, Lu S Z. Metall Mater Trans, 1996; 27A: 611

[27] Trivedi R. Metall Trans, 1984; 15A: 977

[28] Li L X, Lin X, Wang M, Huang W D. Foundry Technol, 2008; 29: 891

(李林蓄, 林 鑫, 王猛, 黄卫东. 铸造技术, 2008; 29: 891)

[29] Qu M, Liu L, Tang F T, Fu H Z. Chin J Nonferrous Met, 2008; 18: 282

(屈敏, 刘林, 唐峰涛, 傅恒志. 中国有色金属学报, 2008; 18: 282)
[1] 郭东伟, 郭坤辉, 张福利, 张飞, 曹江海, 侯自兵. 基于二次枝晶间距变化特征的连铸方坯CET位置判断新方法[J]. 金属学报, 2022, 58(6): 827-836.
[2] 孙德建,刘林,黄太文,张家晨,曹凯莉,张军,苏海军,傅恒志. 镍基单晶高温合金叶片模拟件平台处的枝晶生长和取向演化[J]. 金属学报, 2019, 55(5): 619-626.
[3] 王同敏, 魏晶晶, 王旭东, 姚曼. 合金凝固组织微观模拟研究进展与应用[J]. 金属学报, 2018, 54(2): 193-203.
[4] 李青,王资兴,谢树元. 电渣重熔全过程的数学模型开发及过程模拟研究[J]. 金属学报, 2017, 53(4): 494-504.
[5] 陈瑞, 许庆彦, 吴勤芳, 郭会廷, 柳百成. Al-7Si-Mg合金凝固过程形核模型建立及枝晶生长过程数值模拟*[J]. 金属学报, 2015, 51(6): 733-744.
[6] 侯丹辉, 梁松茂, 陈荣石, 董闯. 砂型铸造Mg-6Al-xZn合金凝固行为及晶粒尺寸*[J]. 金属学报, 2014, 50(5): 601-609.
[7] 张航, 许庆彦, 史振学, 柳百成. DD6高温合金定向凝固枝晶生长的数值模拟研究*[J]. 金属学报, 2014, 50(3): 345-354.
[8] 张显飞,赵九洲. 来流对Al-Cu合金三维树枝晶生长的影响[J]. 金属学报, 2012, 48(5): 615-620.
[9] 卢琦 李金国 金涛 周亦胄 孙晓峰 胡壮麒. 镍基双晶高温合金定向凝固过程中的竞争生长[J]. 金属学报, 2011, 47(6): 641-648.
[10] 周圣银 胡锐 蒋力 李金山 寇宏超 常辉 周廉. 深过冷凝固Co80Pd20合金中的枝晶生长[J]. 金属学报, 2011, 47(4): 391-396.
[11] 闵志先 沈军 熊义龙 王伟 杜玉俊 刘林 傅恒志. 高温度梯度定向凝固镍基高温合金DZ125的组织演化[J]. 金属学报, 2011, 47(4): 397-402.
[12] 杨初斌 刘林 赵新宝 刘刚 张军 傅恒志. <001>和<011>取向DD407单晶高温合金枝晶间距和微观偏析[J]. 金属学报, 2011, 47(10): 1246-1250.
[13] 吴孟武 熊守美. 基于改进CA方法的压铸镁合金微观组织模拟[J]. 金属学报, 2010, 46(12): 1534-1542.
[14] 周亦胄 金涛 孙晓峰. 双晶镍基高温合金定向凝固过程的结构演化[J]. 金属学报, 2010, 46(11): 1327-1334.
[15] 蒋立武 李树索 邱自成 韩雅芳. 拉晶速率对Ni3Al基单晶合金IC6SX凝固组织和高温持久性能的影响[J]. 金属学报, 2009, 45(5): 547-552.