Please wait a minute...
金属学报  2011, Vol. 47 Issue (8): 997-1002    DOI: 10.3724/SP.J.1037.2011.00040
  论文 本期目录 | 过刊浏览 |
交流电对Q235钢腐蚀电位的影响规律研究
姜子涛, 杜艳霞,  董亮,  路民旭
北京科技大学新材料技术研究院, 北京 100083
EFFECT OF AC CURRENT ON CORROSION POTENTIAL OF Q235 STEEL
JIANG Zitao, DU Yanxia, DONG Liang, LU Minxu
Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083
引用本文:

姜子涛 杜艳霞 董亮 路民旭. 交流电对Q235钢腐蚀电位的影响规律研究[J]. 金属学报, 2011, 47(8): 997-1002.
, , , . EFFECT OF AC CURRENT ON CORROSION POTENTIAL OF Q235 STEEL[J]. Acta Metall Sin, 2011, 47(8): 997-1002.

全文: PDF(949 KB)  
摘要: 利用室内模拟实验研究了交流电密度、电解质组分以及交流电频率对Q235钢腐蚀电位的影响规律. 研究结果表明, 交流电会使Q235钢腐蚀电位发生正向或负向偏移, 偏移方向与Q235钢在不同电解质中阴、阳极极化速率有一定的相关性; 偏移量随交流电密度增大而增大,随交流电频率增大而减小. 结合金属界面双电层模型和腐蚀产物分析,对交流电引起Q235钢腐蚀电位偏移的机理进行了探讨.
关键词 交流干扰腐蚀电位 交流电密度 频率    
Abstract:With the rapid development of electricity, petroleum and transport industry, more and more pipelines are buried in parallel with high–voltage transmission lines or electrified railways, and the resulting AC corrosion phenomenon has attracted more attentions. In this work, the effects of AC current density, electrolyte composition and AC current frequency on corrosion potential of Q235 steel were studied through simulation experiments, and the results are as follows: AC current makes corrosion potential of Q235 steel deviate positively or negatively depending on polarization rate of anode/cathode within different electrolytes, and the offset of corrosion potential becomes more significant as the AC current density increases or the AC current frequency decreases. Besides, the inherent mechanism of such offset induced by AC current was also studied through double layer model of interface and corrosion products analyses.
Key wordsAC interference    corrosion potential    AC current density    frequency
收稿日期: 2011-01-17     
ZTFLH: 

TG171

 
基金资助:

北京市自然基金重大项目3080001和北京市科技计划重大项目D08050303450802资助

作者简介: 姜子涛, 男, 1986年生, 博士生
[1] Wakelin R G, Gummow R A, Segall S M. Corrosion–1998, Houston: NACE, 1998: 565

[2] Gummow R A, Wakelin R G, Segall S M. Corrosion–1998, Houston: NACE, 1998: 566

[3] Linhardt P, Ball G. Corrosion–2006, Houston: NACE, 2006: 160

[4] Wakelin R G. Corrosion–2004, Houston: NACE, 2004: 205

[5] Kim D K, Muralidharan S, Ha T H, Bae J H, Ha Y C, Lee H G, Scatlebury J D. Electrochim Acta, 2006; 51: 5259

[6] Muralidharan S, Kim D K, Ha T H, Bae J H, Ha Y C, Lee H G, Scantlebury J D. Desalination, 2007; 216: 103

[7] Ormellese M, Lazzari L, Brenna A. Corrosion–2010, Houston: NACE, 2010: 109

[8] Ormellese M, Lazzari L, Brenna A, Trombetta A. Corrosion–2010, Houston: NACE, 2010: 032

[9] Panossian Z, Filho S E A, de Almeida N L, Pereira Filho M L, Silva D D L, Laurino EW, Oliver J H D L, Pimenta G D S, Albertini J A D C. Corrosion–2009, Houston: NACE, 2009: 541

[10] Goidanich S, Lazzari L, Ormellese M. Corros Sci, 2010; 52: 916

[11] Goidanich S, Lazzari L, Ormellese, M. Corros Sci, 2010; 52: 491

[12] Bosch R W, Bogaerts W F. Corros Sci, 1998; 40: 323

[13] Lalvani S B, Lin X. Corros Sci, 1996; 38: 1709

[14] Bertocci U. Corrosion, 1979; 35: 211

[15] Fu A Q, Cheng Y F. Corros Sci, 2010; 52: 612

[16] Li Z L, Ding Q M, Zhang Y F, Li J J, Li S L. Corros Prot, 2010; 31: 436

(李自力, 丁清苗, 张迎芳, 李静静, 李胜利. 腐蚀与防护, 2010; 31: 436)

[17] Ying K H, Tang M H, Xiong X J. J Chin Soc Corros Prot, 1982; 2: 33

(尹可华, 唐明华, 熊祥键. 中国腐蚀与防护学报, 1982; 2: 33)

[18] Kulman F E. Corrosion, 1961; 17(3): 34

[19] Goidanich S, Lazzari L, Ormellese M, Pedeferri M. Corrosion–2005, Houston: NACE, 2005: 189

[20] Jones D A. Corrosion, 1978; 34: 428

[21] Cao C N. Principles of Electrochemistry of Corrosion. Beijing: Chemical Industry Press. 2008: 53

(曹楚楠. 腐蚀电化学原理. 北京: 化学工业出版社, 2008: 53)
[1] 夏大海, 计元元, 毛英畅, 邓成满, 祝钰, 胡文彬. 2024铝合金在模拟动态海水/大气界面环境中的局部腐蚀机制[J]. 金属学报, 2023, 59(2): 297-308.
[2] 陈闽东, 张帆, 刘智勇, 杨朝晖, 丁国清, 李晓刚. 金属材料在三亚海水中的腐蚀电位序及合金成分对耐蚀性的影响[J]. 金属学报, 2018, 54(9): 1311-1321.
[3] 刘政, 陈志平, 陈涛. 坩埚尺寸和电磁频率对半固态A356铝合金浆料流动的影响[J]. 金属学报, 2018, 54(3): 435-442.
[4] 刘政, 刘小梅, 朱涛, 谌庆春. 低频电磁搅拌对半固态铝合金中稀土分布的影响[J]. 金属学报, 2015, 51(3): 272-280.
[5] 李均明 薛晓楠 蔡辉 蒋百灵. 多孔结构MgO表面化学镀Ni层的制备与表征[J]. 金属学报, 2010, 46(9): 1103-1108.
[6] 洪友士 赵爱国 钱桂安. 合金材料超高周疲劳行为的基本特征和影响因素[J]. 金属学报, 2009, 45(7): 769-780.
[7] 张进修; 熊小敏 . 内耗频谱仪的应用及内耗频率峰机理的探讨[J]. 金属学报, 2003, 39(11): 1127-1132 .
[8] 殷福星 . 实用M2052合金阻尼行为表征[J]. 金属学报, 2003, 39(11): 1139-1144 .
[9] 张进修; 龚康 . 结晶状态对铜内耗频率谱的影响[J]. 金属学报, 2003, 39(11): 1212-1214 .
[10] 张北江; 崔建忠 . 电磁场频率对电磁铸造7075铝合金微观组织的影响[J]. 金属学报, 2002, 38(2): 215-218 .
[11] 陈建桥; 竹园茂男 . 加载频率对中温环境下疲劳裂纹扩展的影响[J]. 金属学报, 2000, 36(8): 813-817 .
[12] 吴细毛; 王中光 . [123]Cu-16Al单晶循环形变的不稳定性 I.应变突发行为[J]. 金属学报, 1999, 35(7): 707-710 .
[13] 冯忠信;张建中;杨建军;陈新增. 金属材料在循环载荷下塑性变形传播对疲劳性能的影响[J]. 金属学报, 1996, 32(3): 261-264.
[14] 田宝辉;张永刚;陈昌麒. Al-Li单晶体锯齿流变的形态特征[J]. 金属学报, 1996, 32(3): 249-253.
[15] 冯忠信;张建中;杨建军;陈新增. 金属材料在循环加载下塑性变形的传播特性[J]. 金属学报, 1995, 31(8): 351-355.