Please wait a minute...
金属学报  2011, Vol. 47 Issue (6): 713-719    DOI: 10.3724/SP.J.1037.2011.00035
  论文 本期目录 | 过刊浏览 |
强磁场对低活化钢中析出行为和力学性能的影响
夏志新,张弛,杨志刚
清华大学材料科学与工程系 先进材料教育部重点实验室, 北京 100084
EFFECT OF HIGH MAGNETIC FIELD ON PRECIPITATION BEHAVIORS AND MECHANICAL PROPERTIES IN REDUCED ACTIVATION STEELS
XIA Zhixin, ZHANG Chi, YANG Zhigang
Key Laboratory of Advanced Materials of Ministry of Education, Department of Materials Science and Engineering,
Tsinghua University, Beijing 100084
引用本文:

夏志新 张弛 杨志刚. 强磁场对低活化钢中析出行为和力学性能的影响[J]. 金属学报, 2011, 47(6): 713-719.
, , . EFFECT OF HIGH MAGNETIC FIELD ON PRECIPITATION BEHAVIORS AND MECHANICAL PROPERTIES IN REDUCED ACTIVATION STEELS[J]. Acta Metall Sin, 2011, 47(6): 713-719.

全文: PDF(2642 KB)  
摘要: 研究了在有、无外加磁场条件下热处理时, 低活化钢中析出相的长大规律及其对力学性能的影响. 经高温强磁场热处理后低活化钢的屈服强度和抗拉强度均比无磁场热处理时低, 而冲击韧性并无明显变化.强磁场显著抑制M23C6(M=Cr, W和Fe)沿原奥氏体晶界和马氏体板条界定向长大, 强磁场下碳化物/铁素体界面能增大是导致长杆状M23C6碳化物球化的主要因素, 并导致析出相颗粒密度降低,平均尺寸增大. 利用Langer-Schwartz模型描述了低活化钢在高温强磁场条件下析出相的粗化过程. 构建三维立体模型修正了屈服强度与沉淀强化关系的公式,定量描述了析出相的粗化过程对低活化钢力学性能的影响, 模拟结果与实验结果符合较好.
关键词 强磁场 低活化钢 碳化物 界面能 析出行为    
Abstract:The long–term exposition of reduced activation steels under high temperature and high magnetic field leads to the microstructural changes. And the microstructure evolution will damage the safety of fusion reactors. This work investigated the influence of high magnetic field on precipitation behavior and mechanical properties in reduced activation steels. As–quenched steels were tempered at 923 K for 3 h with and without a 10 T magnetic field. Tensile strength of the specimens tempered with a 10 T magnetic field decreased in comparison with the specimens tempered without magnetic field. The precipitation behaviors in reduced activation steels were also studied. The results indicated that the applied field could effectively prevent the directional growth of rod–shaped M23C6(M=Cr, W and Fe) carbides along martensite packet boundaries. The aspect ratio of M23C6 carbides decreased due to the increasing of the carbide/ferrite interfacial energy under the high magnetic field. Application of the Laner–Schwartz theoy to model metal carbide precipitation behavior under the magnetic field was described. The results indicated that the density of precipitates decreased and its mean size increased owing to an increase of the precipitate/ferrite interfacial energy. The model could predict the coarsening process of precipitates in reduced activation steels. Moreover, an improvement of the formula between yield strength and mean size of precipitates was also made.
Key wordshigh magnetic field    reduced activation steel    carbide    interface energy    precipitation behavior
收稿日期: 2011-01-14     
ZTFLH: 

TG146.1

 
基金资助:

国家自然科学基金项目51071090和国家重点基础研究发展计划项目2010CB731600资助

作者简介: 夏志新, 男, 1982年生, 博士生
[1] Baluc N, Gelles D S, Jitsukawa S, Kimura A, Klueh R L, Odette G R, Schaaf B van der, Yu J N. J Nucl Mater, 2007; 367: 33

[2] Hao X J, Ohtsuka H, Rango P D, Wada H. Mater Trans, 2003; 44: 211

[3] Choi J K, Ohtsuka H, Xu Y, Choo W Y. Scr Mater, 2000; 43: 221

[4] Kohno Y, Konishi Y, Konishi H, Shibata K, Wada H. Mater Sci Eng, 1999; A273: 21

[5] Zhou Z N, Wu K M. Scr Mater, 2009; 61: 670

[6] Zhang Y D, Zhao X, Bozzolo N, He C S, Zhuo L, Esling C. ISIJ Int, 2005; 45: 913

[7] Xia Z X, Zhang C, Yang Z G, Wang P H, Chen J M, Xu Z Y, Li X W, Liu S. Mater Sci Eng, 2010; A528: 657

[8] Xia Z X, Zhang C, Lan H, Liu Z Q, Yang Z G. Mater Lett, 2011; 65: 937

[9] Zhang Y D, Gey N, He C S, Zhao X, Esling C. Acta Mater, 2004; 52: 3467

[10] Hsu T Y. Theory of Phase Transformation. Beijing: Science Press of China, 1988: 35

(徐祖耀. 相变原理. 北京: 科学出版社, 1988: 35)

[11] Jile D. Introduction to Magnetism and Magnetic Materials, London: Chapman & Hall, 1991: 254

[12] Langer J S, Schwartz A. Phys Rev, 1980; 21A: 948

[13] Xia Z X, Zhang C, Yang Z G. J Mater Sci, 2011; 46: 3151

[14] Fujii H, Tsurekawa S. Phys Rev, 2011; 83B: 054412

[15] Zhang C, Enomoto M, Yamashita T, Sano N. Metall Mater Trans, 2004; 35A: 1264

[16] Cahn J W, Hilliard J E. J Chem Phys, 1959; 31: 688

[17] Yang Z G, Enomoto M. Mater Sci Eng, 2002; A332: 184

[18] Johnson C A. Surf Sci, 1965; 3: 429

[19] Schneider A, Inden G. Acta Mater, 2005; 53: 519

[20] Yong Q L, Zheng L. Acta Metall Sin, 1984; 20: A9

(雍岐龙, 郑鲁. 金属学报, 1984; 20: A9)

[21] Ashby M F. Acta Metall, 1966; 14: 679

[22] Kelly A, Nicholson R B. Prog Mater Sci, 1963; 10: 151

[23] James L Maloney, Warren M Garrison Jr. Acta Mater, 2005; 53: 533
[1] 刘继浩, 周健, 武会宾, 马党参, 徐辉霞, 马志俊. 喷射成形M3高速钢偏析成因及凝固机理[J]. 金属学报, 2023, 59(5): 599-610.
[2] 巩向鹏, 伍翠兰, 罗世芳, 沈若涵, 鄢俊. 自然时效对Al-2.95Cu-1.55Li-0.57Mg-0.18Zr合金160℃人工时效的影响[J]. 金属学报, 2023, 59(11): 1428-1438.
[3] 李闪闪, 陈云, 巩桐兆, 陈星秋, 傅排先, 李殿中. 冷速对高碳铬轴承钢液析碳化物凝固析出机制的影响[J]. 金属学报, 2022, 58(8): 1024-1034.
[4] 王硕, 王俊升. Al-Li合金中 δ′/θ′/δ复合沉淀相结构演化及稳定性的第一性原理探究[J]. 金属学报, 2022, 58(10): 1325-1333.
[5] 杨柯,梁烨,严伟,单以银. (9~12)%Cr马氏体耐热钢中微量B元素的择优分布行为及其对微观组织与力学性能的影响[J]. 金属学报, 2020, 56(1): 53-65.
[6] 李嘉荣,谢洪吉,韩梅,刘世忠. 第二代单晶高温合金高周疲劳行为研究[J]. 金属学报, 2019, 55(9): 1195-1203.
[7] 黎旺,孙倩,江鸿翔,赵九洲. Al-Bi合金凝固过程及微合金化元素Sn的影响[J]. 金属学报, 2019, 55(7): 831-839.
[8] 董福涛,薛飞,田亚强,陈连生,杜林秀,刘相华. 退火温度对TWIP钢组织性能和氢致脆性的影响[J]. 金属学报, 2019, 55(6): 792-800.
[9] 黄宇, 成国光, 李世健, 代卫星. Ce微合金化H13钢中一次碳化物的析出机理及热稳定性研究[J]. 金属学报, 2019, 55(12): 1487-1494.
[10] 李淑波, 杜文博, 王旭东, 刘轲, 王朝辉. Zr对Mg-Gd-Er合金晶粒细化机理的影响[J]. 金属学报, 2018, 54(6): 911-917.
[11] 张涛, 严玮, 谢卓明, 苗澍, 杨俊峰, 王先平, 方前锋, 刘长松. 碳化物/氧化物弥散强化钨基材料研究进展[J]. 金属学报, 2018, 54(6): 831-843.
[12] 王强, 董蒙, 孙金妹, 刘铁, 苑轶. 强磁场下合金凝固过程控制及功能材料制备[J]. 金属学报, 2018, 54(5): 742-756.
[13] 坚增运, 徐涛, 许军锋, 朱满, 常芳娥. 熔体-结晶相固-液界面能的研究进展[J]. 金属学报, 2018, 54(5): 766-772.
[14] 刘锡荣, 张凯, 夏爽, 刘文庆, 李慧. 690合金中三晶交界及晶界类型对碳化物析出形貌的影响[J]. 金属学报, 2018, 54(3): 404-410.
[15] 陈胜虎, 戎利建. Ni-Fe-Cr合金固溶处理后的组织变化及其对性能的影响[J]. 金属学报, 2018, 54(3): 385-392.