Please wait a minute...
金属学报  2011, Vol. 47 Issue (5): 528-534    DOI: 10.3724/SP.J.1037.2011.00004
  论文 本期目录 | 过刊浏览 |
考虑压室预结晶的镁合金压铸组织实验及模拟研究
吴孟武, 熊守美
清华大学机械工程系, 汽车安全与节能国家重点实验室, 北京 100084
EXPERIMENTAL AND MODELING STUDIES ON THE STRUCTURE FORMATION OF HIGH PRESSURE DIE CAST MAGNESIUM ALLOY CONSIDERING THE EXTERNALLY SOLIDIFIED CRYSTALS IN THE SHOT SLEEVE\par
WU Mengwu, XIONG Shoumei
State Key Laboratory of Automobile Safety and Energy, Department of Mechanical Engineering, Tsinghua University, Beijing 100084
引用本文:

吴孟武 熊守美. 考虑压室预结晶的镁合金压铸组织实验及模拟研究[J]. 金属学报, 2011, 47(5): 528-534.
, . EXPERIMENTAL AND MODELING STUDIES ON THE STRUCTURE FORMATION OF HIGH PRESSURE DIE CAST MAGNESIUM ALLOY CONSIDERING THE EXTERNALLY SOLIDIFIED CRYSTALS IN THE SHOT SLEEVE\par[J]. Acta Metall Sin, 2011, 47(5): 528-534.

全文: PDF(1365 KB)  
摘要: 针对镁合金压铸件表层晶粒细小均匀而心部晶粒较粗大且不均匀的特点, 开展一系列压铸实验, 研究镁合金压铸工艺对压室预结晶和压铸件最终凝固组织 (特别是对晶粒大小、压室预结晶组织的含量及分布形态)的影响. 采用数值模拟方法, 以压铸实验统计数据为基础, 建立了考虑压室预结晶的镁合金压铸形核模型, 以此模拟更接近实际的压铸组织. 应用所建立的形核及生长模型, 模拟了不同压铸工艺下AM50镁合金“阶梯”压铸件的凝固组织, 模拟结果与实验结果吻合较好.
关键词 镁合金压铸预结晶组织形核模型组织模拟    
Abstract:The externally solidified crystals (ESCs) in the shot sleeve have a great influence on the final structure of magnesium alloy during cold-chamber high pressure die casting (HPDC) process. In typical HPDC microstructure, a surface layer with uniformly fine grains and a central region containing a mixture of coarse ESCs and fine grains are commonly observed from the cross section of the castings. In the present work, experiments were conducted to investigate the effects of process parameters on the formation of ESCs in the shot sleeve and the final microstructure of magnesium alloy, especially focusing on the grain size, the morphology and distribution of the ESCs. Based on cellular automaton method, a numerical model was developed to simulate the microstructure evolution of magnesium alloy under HPDC process. According to experimental statistics relating the area fraction of the ESCs, a nucleation model was established in which the ESCs in the shot sleeve were taken into account. Simulations were carried out to predict the microstructure of “step-shape” die castings of AM50 magnesium alloy with different process parameters. It was found that the simulated results were in accordance with the experimental ones.
Key wordsmagnesium alloy    high pressure die casting    externally solidified crystals    nucleation model    microstructure simulation
收稿日期: 2011-01-05     
ZTFLH: 

TG244

 
基金资助:

国家科技重大专项项目2011ZX04014-052, 国家高技术研究发展计划项目2009AA03Z114和日本东洋机械金属株式会社国际合作项目083000148资助

作者简介: 吴孟武, 男, 1984年生, 博士生
[1] Aghion E, Bronfin B. Mater Sci Forum, 2000; 350: 19

[2] Mordike B L, Ebert T. Mater Sci Eng, 2001; A302: 37

[3] Li R D, Yu H P, Yuan X G. Foundry, 2003; 52: 597

(李荣德, 于海朋, 袁晓光. 铸造, 2003; 52: 597)

[4] Boettinger W J, Coriell S R, Greer A L, Karma A, Kurz W, Rappaz M, Trivedi R. Acta Mater, 2000; 48: 43

[5] Laukli H I, Lohne O, Sannes S, Gjestland H, Arnberg L. Int J Cast Met Res, 2003; 16: 515

[6] Helenius R, Lohne O, Arnberg L, Laukli H I. Mater Sci Eng, 2005; A413: 52

[7] Yamagata H, Kasprzak W, Aniolek M, Kurita H, Sokolowski J H. J Mater Process Technol, 2008; 203: 333

[8] Laukli H I, Arnberg L, Lohne O. Int J CastMet Res, 2005; 18: 65

[9] Laukli H I, Gourlay C M, Dahle A K. Metall Mater Trans, 2005; 36A: 805

[10] Cao H, Wess´en M. Int J Cast Met Res, 2005; 18: 377

[11] Dahle A K, Sannes S, StJohn D H, Westengen H. J Light Met, 2001; 1: 99

[12] Th´evoz P, Desbiolles J L, Rappaz M. Metall Trans, 1989; 20A: 311

[13] Rappaz M, Gandin C A, Desbiolles J L, Th´evoz P. Metall Mater Trans, 1996; 27A: 695

[14] Nastac L. Acta Mater, 1999; 47: 4253

[15] Beltran–Sanchez L, Stefanescu D M. Metall Mater Trans, 2004; 35A: 2471

[16] Wang W, Lee P D, Mclean M. Acta Mater, 2003; 51: 2971

[17] Li Q, Li D Z, Qian B N. Acta Matall Sin, 2004; 40: 634

(李强, 李殿中, 钱百年. 金属学报, 2004; 40: 634)

[18] Chen J, Zhu M F, Sun G X. Acta Matall Sin, 2005; 41: 799

(陈 晋, 朱鸣芳, 孙国雄. 金属学报, 2005; 41: 799)

[19] Zhu M F, Stefanescu D M. Acta Mater, 2007; 55: 1741

[20] Ohsasa K, Matsuura K, Kurokawa K, Watanabe S. Mater Sci Forum, 2008; 575: 154

[21] Guo Z P, Xiong S M, Cho S H, Choi J K. Acta Matall Sin, 2007; 43: 103

(郭志鹏, 熊守美, 曺尚铉, 崔正吉. 金属学报, 2007; 43: 103)

[22] Wu M W, Xiong S M. Acta Matall Sin, 2010; 46: 1534

(吴孟武, 熊守美. 金属学报, 2010; 46: 1534)
[1] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[2] 邵晓宏, 彭珍珍, 靳千千, 马秀良. 镁合金LPSO/SFs结构间{101¯2}孪晶交汇机制的原子尺度研究[J]. 金属学报, 2023, 59(4): 556-566.
[3] 沈朝, 王志鹏, 胡波, 李德江, 曾小勤, 丁文江. 镁合金抗高温氧化机理研究进展[J]. 金属学报, 2023, 59(3): 371-386.
[4] 朱云鹏, 覃嘉宇, 王金辉, 马鸿斌, 金培鹏, 李培杰. 机械球磨结合粉末冶金制备AZ61超细晶镁合金的组织与性能[J]. 金属学报, 2023, 59(2): 257-266.
[5] 唐伟能, 莫宁, 侯娟. 增材制造镁合金技术现状与研究进展[J]. 金属学报, 2023, 59(2): 205-225.
[6] 彭立明, 邓庆琛, 吴玉娟, 付彭怀, 刘子翼, 武千业, 陈凯, 丁文江. 镁合金选区激光熔化增材制造技术研究现状与展望[J]. 金属学报, 2023, 59(1): 31-54.
[7] 陈扬, 毛萍莉, 刘正, 王志, 曹耕晟. 高速冲击载荷下预压缩AZ31镁合金的退孪生行为与动态力学性能[J]. 金属学报, 2022, 58(5): 660-672.
[8] 孙宝德, 王俊, 康茂东, 汪东红, 董安平, 王飞, 高海燕, 王国祥, 杜大帆. 高温合金超限构件精密铸造技术及发展趋势[J]. 金属学报, 2022, 58(4): 412-427.
[9] 曾小勤, 王杰, 应韬, 丁文江. 镁及其合金导热研究进展[J]. 金属学报, 2022, 58(4): 400-411.
[10] 罗旋, 韩芳, 黄天林, 吴桂林, 黄晓旭. 层状异构Mg-3Gd合金的微观组织和力学性能[J]. 金属学报, 2022, 58(11): 1489-1496.
[11] 李少杰, 金剑锋, 宋宇豪, 王明涛, 唐帅, 宗亚平, 秦高梧. “工艺-组织-性能”模拟研究Mg-Gd-Y合金混晶组织[J]. 金属学报, 2022, 58(1): 114-128.
[12] 刘日平, 马明臻, 张新宇. 块体非晶合金铸造成形的研究新进展[J]. 金属学报, 2021, 57(4): 515-528.
[13] 潘复生, 蒋斌. 镁合金塑性加工技术发展及应用[J]. 金属学报, 2021, 57(11): 1362-1379.
[14] 王慧远, 夏楠, 布如宇, 王珵, 查敏, 杨治政. 低合金化高性能变形镁合金研究现状及展望[J]. 金属学报, 2021, 57(11): 1429-1437.
[15] 王雪梅, 殷正正, 于晓彤, 邹玉红, 曾荣昌. AZ31镁合金表面苯丙氨酸、甲硫氨酸和天冬酰胺诱导Ca-P涂层耐蚀性能比较[J]. 金属学报, 2021, 57(10): 1258-1271.