Please wait a minute...
金属学报  2011, Vol. 47 Issue (5): 628-633    DOI: 10.3724/SP.J.1037.2010.00712
  论文 本期目录 | 过刊浏览 |
磁控溅射Al-Mg-B薄膜成分优化
曲文超1, 2), 吴爱民1, 2), 吴占玲1, 3), 白亦真1, 3), 姜辛1, 3, 4)
1) 大连理工大学机械工程与材料能源学部 材料科学与工程学院, 大连 116024
2) 大连理工大学三束材料改性教育部重点实验室, 大连 116024
3) 大连理工大学物理与光电工程学院, 大连 116024
4) Institute of Materials Engineering, University of Siegen, Siegen 57076
COMPOSITION OPTIMIZATION OF Al-Mg-B THIN FILM PROPERTIES PREPERAED BY MAGNETRON SPUTTERING
QU Wenchao1, 2), WU Aimin1, 2), WU Zhanling1, 3), BAI Yizhen1, 3), JIANG Xin1, 3, 4)
1) School of Materials Science and Engineering, Faculty of Mechanical Engineering and Materials Energy, Dalian University of Technology, Dalian 116024
2) Key Laboratory of Materials Modification by Laser, Ion and Electron Beams, Ministry of Education, Dalian University of Technology, Dalian 116024
3) School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024
4) Institute of Materials Engineering, University of Siegen, Siegen 57076
引用本文:

曲文超 吴爱民 吴占玲 白亦真 姜辛. 磁控溅射Al-Mg-B薄膜成分优化[J]. 金属学报, 2011, 47(5): 628-633.
, , , , . COMPOSITION OPTIMIZATION OF Al-Mg-B THIN FILM PROPERTIES PREPERAED BY MAGNETRON SPUTTERING[J]. Acta Metall Sin, 2011, 47(5): 628-633.

全文: PDF(1002 KB)  
摘要: 采用多靶磁控共溅射技术, 利用高纯度Al, Mg和B单质靶材为溅射源, 室温下在单晶Si(100)表面上成功制备了低摩擦系数的非晶态Al-Mg-B硬质薄膜. 通过改变Al/Mg混合靶体积配比及靶材溅射功率来调控薄膜成分, 最终制备的Al-Mg-B薄膜成分接近 AlMgB14相的元素成分比, 其Vickers硬度约为32 GPa. XRD及HR-TEM分析表明, 制备的薄膜均为非晶态. XPS测试表明薄膜内部存在B-B及Al-B单键; FTIR进一步测试表明, 在波数1100 cm-1处出现较为明显的振动吸收峰, 证明制备的薄膜中含有B12二十面体结构, 这也是薄膜具有超硬性的主要原因. 薄膜摩擦磨损测试表明薄膜摩擦系数在0.07左右.
关键词 磁控溅射Al-Mg-B薄膜硬度B12二十面体    
Abstract:Aluminum magnesium boron ternary boride (AlMgB14) possesses high hardness, high-temperature oxidation resistance, high temperature corrosion resistance, low density, low friction and other excellent properties, and could be widely used in tool, mold, micro-mechanical manufacture and aerospace, et al. In this paper, Al-Mg-B films have been prepared by multi-target (high pure aluminum, magnesium and boron targets) magnetron sputtering on the silicon (100) substrate at room temperature. The films with an atomic ratio of Al∶Mg∶B=1∶1∶14 were obtained by controlling the sputtering power and the volume ratio of Al/Mg co-target. X-ray diffraction (XRD) and High resolution transmission electron microscopy (HR-TEM) test results show that all the as-deposited films are amorphous. The X-ray photoelectron spectroscopy (XPS) results showe that there are some B-B and Al-B single bond in the as--deposited films, and the Fourier transform infrared spectroscopy (FTIR) tests indicate further that the films possess B12 icosahedra structure. The hardness of the films as shown by nano indentor test will be increasing with the increase of content of B around B-AlMg isoelectronic line and close to boron--rich side, and up to 32 GPa with low friction coefficients of 0.06-0.08.
Key wordsmagnetron sputtering    Al-Mg-B film    hardness    B12 icosahedra structure
收稿日期: 2010-12-30     
基金资助:

中央高校基本科研业务费专项资金资助项目DUT10JN08

作者简介: 曲文超, 男, 1983年生, 博士生
[1] Matkovich V I, Economy J. Acta Crystallogr, 1970; 26B: 616

[2] Wang W H. J Non–Cryst Solids, 2005; 351: 1481

[3] Tian Y, Constant A, Lo C C H, Anderegg J W, Russell A M, Snyder J E, Molian P. J Vac Sci Technol, 2003; 21A: 1055

[4] Higashi W, Ito T. J Less Common Met, 1983; 92: 239

[5] Pellegrino J L, Margolis N, Justiniano M, Miller M, Thedki A. Energy Use, Loss and Opportunities Analysis: U.S. Manufacturing & Mining. U.S. Department of Energy’s Industrial Technologies Program, 2004.12. http://www1.eere.energy.gov/industry/intensiveprocesses/pdfs/energy use loss opportunities analysis.pdf

[6] Cook B A, Harringa J L, Lewis T L, Russell A M. Scr Mater, 2000; 42: 597

[7] Tian Y, Bastawros A F, Lo C C H, Constant A P, Russell A M, Cook B A. Appl Phys Lett, 2003; 83: 2781

[8] Li Z G, Miyake S. Acta Metall Sin, 2010; 46: 13

(李铸国, 三宅正司. 金属学报, 2010; 46: 13)

[9] Tian Y, WomackM, Molian P, Lo C C H, Anderegg J W, Russell A M. Thin Solid Films, 2002; 418: 129

[10] Fjellstedt J, Jarfors A E W, Svendsen L. J Alloys Compd, 1999; 283: 192

[11] Hill J M, Johnston D C, Cook B A, Harringa J L, Russell A M. J Magn Magn Mater, 2003; 265: 23

[12] Lowther J E. Physica, 2002; 322B: 173

[13] Cherukuri R, Womack M, Molian P, Russell A M, Tian Y. Surf Coat Technol, 2002; 155: 112

[14] Roberts D J, Zhao J. F, Munir Z A. Int J Refract Met Hard Mater, 2009; 27: 556

[15] Erdemir A, Bindal C, Fenske G R. Appl Phys Lett, 1996; 68: 1637

[16] Bindal C, Erdemir A. Appl Phys Lett, 1996; 68: 923
[1] 黄鼎, 乔岩欣, 杨兰兰, 王金龙, 陈明辉, 朱圣龙, 王福会. 基体表面喷丸处理对纳米晶涂层循环氧化行为的影响[J]. 金属学报, 2023, 59(5): 668-678.
[2] 王海峰, 张志明, 牛云松, 杨延格, 董志宏, 朱圣龙, 于良民, 王福会. 前置渗氧对TC4钛合金低温等离子复合渗层微观结构和耐磨损性能的影响[J]. 金属学报, 2023, 59(10): 1355-1364.
[3] 梁琛, 王小娟, 王海鹏. 快速凝固Ti-Al-Nb合金B2相形成机制与显微力学性能[J]. 金属学报, 2022, 58(9): 1169-1178.
[4] 王韬, 龙弟均, 余黎明, 刘永长, 李会军, 王祖敏. 超高压烧结制备14Cr-ODS钢及微观组织与力学性能[J]. 金属学报, 2022, 58(2): 184-192.
[5] 项兆龙, 张林, XIN Yan, 安佰灵, NIU Rongmei, LU Jun, MARDANI Masoud, HAN Ke, 王恩刚. Cr含量对FeCrCoSi永磁合金调幅分解组织及其性能的影响[J]. 金属学报, 2022, 58(1): 103-113.
[6] 胡龙, 王义峰, 李索, 张超华, 邓德安. 基于SH-CCT图的Q345钢焊接接头组织与硬度预测方法研究[J]. 金属学报, 2021, 57(8): 1073-1086.
[7] 曹庆平, 吕林波, 王晓东, 蒋建中. 物理气相沉积制备金属玻璃薄膜及其力学性能的样品尺寸效应[J]. 金属学报, 2021, 57(4): 473-490.
[8] 张林, 郭晓, 高建文, 邓安元, 王恩刚. 电磁搅拌对TiB2颗粒增强钢组织和力学性能的影响[J]. 金属学报, 2020, 56(9): 1239-1246.
[9] 童文辉, 张新元, 李为轩, 刘玉坤, 李岩, 国旭明. 激光工艺参数对TiC增强钴基合金激光熔覆层组织及性能的影响[J]. 金属学报, 2020, 56(9): 1265-1274.
[10] 邓聪坤,江鸿翔,赵九洲,何杰,赵雷. Ag-Ni偏晶合金凝固过程研究[J]. 金属学报, 2020, 56(2): 212-220.
[11] 刘艳梅, 王铁钢, 郭玉垚, 柯培玲, 蒙德强, 张纪福. Ti-B-N纳米复合涂层的设计、制备及性能[J]. 金属学报, 2020, 56(11): 1521-1529.
[12] 刘海霞, 陈金豪, 陈杰, 刘光磊. NaCl溶液腐蚀后304不锈钢的射流空蚀特征[J]. 金属学报, 2020, 56(10): 1377-1385.
[13] 李博,张忠铧,刘华松,罗明,兰鹏,唐海燕,张家泉. 高强耐蚀管钢点状偏析及带状缺陷的特征与演变[J]. 金属学报, 2019, 55(6): 762-772.
[14] 李文涛,王振玉,张栋,潘建国,柯培玲,汪爱英. 电弧复合磁控溅射结合热退火制备Ti2AlC涂层[J]. 金属学报, 2019, 55(5): 647-656.
[15] 杨莎莎,杨峰,陈明辉,牛云松,朱圣龙,王福会. N掺杂对磁控溅射Ta涂层微观结构与耐磨损性能的影响[J]. 金属学报, 2019, 55(3): 308-316.