Please wait a minute...
金属学报  2011, Vol. 47 Issue (5): 594-600    DOI: 10.3724/SP.J.1037.2010.00711
  论文 本期目录 | 过刊浏览 |
基于内聚力模型的AISI4135高强钢氢致滞后断裂数值模拟
王艳飞1), 巩建鸣1), 蒋文春2), 姜勇1), 唐建群1)
1) 南京工业大学机械与动力工程学院, 南京 210009
2) 中国石油大学(华东)机电工程学院, 东营 257061
NUMERICAL SIMULATION OF HYDROGEN INDUCED DELAYED FRACTURE OF AISI4135 HIGH STRENGTH STEEL USING COHESIVE ZONE MODELING
WANG Yanfei1), GONG Jianming1), JIANG Wenchun2),  JIANG Yong1), TANG Jianqun1)
1) College of Mechanical and Power Engineering, Nanjing University of Technology, Nanjing 210009
2) College of Mechanical and Electronic Engineering, China University of Petroleum, Dongying 257061
引用本文:

王艳飞 巩建鸣 蒋文春 姜勇 唐建群. 基于内聚力模型的AISI4135高强钢氢致滞后断裂数值模拟[J]. 金属学报, 2011, 47(5): 594-600.
, , , , . NUMERICAL SIMULATION OF HYDROGEN INDUCED DELAYED FRACTURE OF AISI4135 HIGH STRENGTH STEEL USING COHESIVE ZONE MODELING[J]. Acta Metall Sin, 2011, 47(5): 594-600.

全文: PDF(1336 KB)  
摘要: 基于有限元ABAQUS软件, 利用内聚力模型和与H相关的线性内聚力-张开位移率关系, 开发了顺次耦合的氢致滞后断裂有限元计算程序, 预测了预充H的AISI4135高强钢圆柱缺口试样在常载荷拉伸条件下的滞后断裂时间和裂纹萌生位置, 同时考察初始H含量、缺口尖端应力集中系数和拉伸载荷对滞后断裂的影响, 并和文献报道的相关实验结果进行比较. 结果表明, CZM模型能够较好地模拟预充H高强度钢的氢致滞后断裂过程, 预测结果和实验结果基本一致. 氢致滞后断裂存在 H临界值, 当缺口尖端高应力区聚集的H浓度达到临界值时, 裂纹才会在此萌生, 此临界值与材料所受的载荷大小、缺口尖端的应力集中系数(缺口半径)有关, 而与初始H浓度无关. 随着缺口尖端应力集中系数、拉伸载荷的降低, 滞后时间将显著增大, 临界H浓度也增大.
关键词 内聚力模型氢致滞后断裂高强钢氢脆    
Abstract:High strength steels are susceptible to hydrogen induced delayed fracture (HIDF). A sequential coupling calculation on HIDF of high strength steel was developed based on cohesive zone modeling (CZM) using finite element program-ABAQUS. The calculation procedure contained three steps: elastic plastic stress analysis, stress assisted transient hydrogen diffusion and cohesive stress analysis using hydrogen dependent linear traction-separation law. Using this method, the prediction of fracture time and crack initiation location of pre-charged notched bar of AISI4135 high strength steel was obtained. The effects of stress concentration factor, initial hydrogen content, and tension load were also considered. The results show: (i) predictions of the time to fracture were in good quantitative agreement with the experimental results; the hydrogen dependent cohesive zone modeling can be used in prediction of failure in actual structures; (ii) crack initiation occurs when a critical hydrogen concentration at the location of stress peak is reached by accumulation, the critical hydrogen concentration is dependent on stress concentration factor and tension load, but independent of initial hydrogen content; (iii) as one of the three parameters mentioned above decreasing, the fracture initiation time and the critical hydrogen\linebreak concentration increase.
Key wordscohesive zone modeling (CZM)    hydrogen induced delayed fracture (HIDF)    high strength steel    hydrogen embrittlement
收稿日期: 2010-12-30     
ZTFLH: 

TG457

 
基金资助:

江苏省“六大人才高峰”基金项目06-D-035和江苏省工业装备数字制造及控制技术重点实验室基金项目BM2007201资助

作者简介: 王艳飞, 男, 1986年生, 博士生
[1] Chu W Y, Qiao L J, Chen Q Z, Gao K W. Fracture and Environment Fracture. Beijing: Science Press, 2000: 126

(褚武扬, 乔利杰, 陈奇志, 高克玮. 断裂与环境断裂. 北京: 科学出版社, 2000: 126)

[2] Serebrinsky S, Carter E A, Ortiz M. J Mech Phys Solids, 2004; 52: 2403

[3] Liang Y, Sofronis P. J Mech Phys Solids, 2003; 51: 1509

[4] Olden V, Thaulow C, Johnsen R, Φstby E, Berstad T. Eng Fract Mech, 2008; 75: 2333

[5] Olden V, Thaulow C, Johnsen R, Φstby E. Scr Mater, 2007; 57: 615

[6] Scheider I, Pfuff M, Dietzel W. Eng Fract Mech, 2008; 75: 4283

[7] Wang M Q, Akiyama E, Tsuzaki K. Corros Sci, 2006; 48: 2189

[8] Dugdale D S. J Mech Phys Solids, 1960; 8: 100

[9] Barrenblatt G I. Adv Appl Mech, 1962; 7: 55

[10] Hillerborg A, Modeer M, Petersson P. Cement Concrete Res, 1976; 6: 773

[11] Needleman A. J Appl Mech, 1987; 54: 525

[12] Nguyen O, Ortiz M. J Mech Phys Solids, 2002; 50: 1727

[13] Jiang D E, Carter E A. Acta Mater, 2004; 52:4801

[14] Hondros E D, Seah M P. Metall Trans, 1977; 8A: 1363

[15] Van der Ven A, Ceder G. Phys Rev, 2003; 67B: 060101

[16] Tvergaard V, Hutchinson J W. J Mech Phys Solids, 1992; 40: 1377

[17] Wang M Q, Akiyama E, Tsuzaki K. Mater Sci Eng, 2005; A398: 37

[18] GerberichWW, Livne T, Chen X F, Kaczorowski M. Metall Trans, 1988; 19A: 1319

[19] Williams D P, Nelson H G. Metall Trans, 1970; 1: 63
[1] 王重阳, 韩世伟, 谢峰, 胡龙, 邓德安. 固态相变和软化效应对超高强钢焊接残余应力的影响[J]. 金属学报, 2023, 59(12): 1613-1623.
[2] 侯旭儒, 赵琳, 任淑彬, 彭云, 马成勇, 田志凌. 热输入对电弧增材制造船用高强钢组织与力学性能的影响[J]. 金属学报, 2023, 59(10): 1311-1323.
[3] 金鑫焱, 储双杰, 彭俊, 胡广魁. 露点对连续退火0.2%C-1.5%Si-2.5%Mn高强钢选择性氧化及脱碳的影响[J]. 金属学报, 2023, 59(10): 1324-1334.
[4] 肖娜, 惠卫军, 张永健, 赵晓丽. 真空渗碳处理齿轮钢的氢脆敏感性[J]. 金属学报, 2021, 57(8): 977-988.
[5] 兰亮云, 孔祥伟, 邱春林, 杜林秀. 基于多尺度力学实验的氢脆现象的最新研究进展[J]. 金属学报, 2021, 57(7): 845-859.
[6] 陆斌, 陈芙蓉, 智建国, 耿如明. 应用稀土氧化物冶金技术改善高强钢焊接性能[J]. 金属学报, 2020, 56(9): 1206-1216.
[7] 周红伟, 白凤梅, 杨磊, 陈艳, 方俊飞, 张立强, 衣海龙, 何宜柱. 1100 MPa级高强钢的低周疲劳行为[J]. 金属学报, 2020, 56(7): 937-948.
[8] 刘振宝,梁剑雄,苏杰,王晓辉,孙永庆,王长军,杨志勇. 高强度不锈钢的研究及发展现状[J]. 金属学报, 2020, 56(4): 549-557.
[9] 李金许,王伟,周耀,刘神光,付豪,王正,阚博. 汽车用先进高强钢的氢脆研究进展[J]. 金属学报, 2020, 56(4): 444-458.
[10] 罗海文,沈国慧. 超高强高韧化钢的研究进展和展望[J]. 金属学报, 2020, 56(4): 494-512.
[11] 赵晓丽, 张永健, 邵成伟, 惠卫军, 董瀚. 两相区退火处理冷轧0.1C-5Mn中锰钢的氢脆敏感性[J]. 金属学报, 2018, 54(7): 1031-1041.
[12] 文明月, 董文超, 庞辉勇, 陆善平. 一种Fe-Cr-Ni-Mo高强钢焊接热影响区的显微组织与冲击韧性研究[J]. 金属学报, 2018, 54(4): 501-511.
[13] 孙军, 李苏植, 丁向东, 李巨. 氢化空位的基本性质及其对金属力学行为的影响[J]. 金属学报, 2018, 54(11): 1683-1692.
[14] 杜瑜宾, 胡小锋, 姜海昌, 闫德胜, 戎利建. 回火时间对Fe-Cr-Ni-Mo高强钢碳化物演变及力学性能的影响[J]. 金属学报, 2018, 54(1): 11-20.
[15] 张清东,林潇,曹强,卢兴福,张勃洋,胡树山. 冷轧高强钢板淬火过程板形瓢曲缺陷演变规律研究[J]. 金属学报, 2017, 53(4): 385-396.