Please wait a minute...
金属学报  2011, Vol. 47 Issue (6): 663-670    DOI: 10.3724/SP.J.1037.2010.00700
  论文 本期目录 | 过刊浏览 |
电弧熔炼态Laves相Cr2Nb/Cr合金的微观组织演变
李克伟,李双明,傅恒志
西北工业大学凝固技术国家重点实验室, 西安 710072
MICROSTRUCTURE EVOLUTION OF LAVES PHASE Cr2Nb/Cr ALLOYS PREPARED BY ARC MELTING
LI Kewei, LI Shuangming, FU Hengzhi
State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi’an 710072
引用本文:

李克伟 李双明 傅恒志. 电弧熔炼态Laves相Cr2Nb/Cr合金的微观组织演变[J]. 金属学报, 2011, 47(6): 663-670.
, , . MICROSTRUCTURE EVOLUTION OF LAVES PHASE Cr2Nb/Cr ALLOYS PREPARED BY ARC MELTING[J]. Acta Metall Sin, 2011, 47(6): 663-670.

全文: PDF(3562 KB)  
摘要: 采用真空非自耗电弧熔炼法制备了Cr-12%Nb(原子分数, 下同)和Cr-20%Nb 2种成分合金的纽扣锭, 利用XRD, OM, SEM和EDS对电弧熔炼态纽扣锭不同位置的组织及其竞争生长进行了研究. 结果表明:Cr-12%Nb合金纽扣锭底部为细小的离异共晶, 中部和顶部则由粗大的初生Cr相和共晶组织(Cr2Nb+Cr)组成. 而Cr-20%Nb纽扣锭底部出现的是胞状层片共晶组织, 层片间距为0.3 μm, 随着距纽扣锭底部距离的增加,冷却速率逐渐降低, 凝固组织中相继出现Cr2Nb板条枝晶和花瓣状Cr2Nb枝晶. 同时, 基于TMK快速凝固共晶模型和BCT枝晶生长模型, 通过计算并比较共晶组织和Laves相Cr2Nb枝晶界面生长温度, 借助最高界面生长温度判据,很好地解释了Cr-20%Nb合金凝固组织的演变及其形成原因.
关键词 真空非自耗电弧熔炼 Laves相Cr2Nb 离异共晶 共晶领先相    
Abstract:The Cr–12%Nb (atomic fraction) and Cr–20%Nb alloys prepared by vacuum non–consumable arc melting were investigated to understand the  icrostructure evolution of the Laves phase Cr2Nb/Cr alloys. The solidified microstructures including the phase formation and competitive growth were studied using OM, XRD as well as SEM with an EDS. The results showed that different microstructure morphologies were observed in the Cr–12%Nb and Cr–20%Nb alloys. For the Cr–12%Nb alloy, divorced eutectics were grown at the bottom part of the ingot. Primary Cr dendrites and coupled eutectic (Cr2Nb+Cr) appeared in the middle and upper part of the ingot. For the Cr–20%Nb alloy, cellular eutectics of which the lamellar spacing was about 0.3 μm were found at the bottom of the ingot. With the decrease in cooling rate in the middle and upper part of the ingot, plate primary Cr2Nb dendrites and petal–like Cr2Nb dendrites were developedBesides, using the TMK model for rapid utctc solidification and the BCT dendrtc growth model, the inteface growth temperatures between the coupled eutectic (Cr2Nb+Cr) and priary Cr2Nb phase wee computed and compared with the experimental results. Based on the maximum interface growth temperature criteria, the earance of multiple solidified microstructures of the Cr–20%Nb alloy could be explaind  successfully.
Key wordsvacuum non–consumable arc melting    Laves phse Cr2Nb    divorced eutectic    eutectic leading phase
收稿日期: 2010-12-27     
基金资助:

国家自然科学基金项目50971101和51074127, 高等学校博士学科点专项科研基金项目20096102110011和西工大基础研究基金项目JC201029资助

作者简介: 李克伟, 男, 1983年生, 博士生
[1] Kazantzis A V, Aindow M, I P Jones, Triantafyllidis G K, Hosson J Th M De. Acta Mater, 2007; 55: 1873

[2] Von Keitz A, Sauthoff G. Intermetallics, 2002; 10: 497

[3] Liu C T, Zhu J H, Brady M P, McKamey C G, Pike L M. Intermetallics, 2000; 8: 1119

[4] Machon L, Sauthoff G. Intermetallics, 1996; 4: 469

[5] Liu C T, Tortorelli P F, Horton J A, Carmichael C A. Mater Sci Eng, 1996; A214: 23

[6] Xiao X, Lu S Q, Ma Y Q, Hu P, Huang M G, Nie X W.Rare Met Mater Eng, 2008; 37: 119

(肖 璇, 鲁世强, 马燕青, 胡 平, 黄明刚, 聂小武. 稀有金属材料与工程, 2008; 37: 119)

[7] Bewlay B P, Lipsitt H A, Jackson M R. Mater Sci Eng, 1995; A192–193: 534

[8] Bewlay B P, Sutliff J A, Jackson M R. Acta Metall Mater, 1994; 42: 2869

[9] He Y D, Qu X H, Huang B Y. Rare Mater, 2003; 3: 303

(何玉定, 曲选辉, 黄伯云. 稀有金属, 2003; 3; 303)

[10] Thoma D J, Perepezko J H. Mater Sci Eng, 1992; A156: 97

[11] Thoma D J, Perepezko J H. Mater Sci Eng, 1992; A156: 97

[12] Kumar K S, Hazzledine P M. Intermetallics, 2004; 12: 763

[13] Kazantzis A V, Aindow M, Jones I P, Triantafyllidis G K, De Hosson J Th M. Acta Mater, 2007; 55: 1873

[14] Tiller W A. The Science of Crystallization: Macroscopic Phenomena and Defect Generation. Cambridge: Cambridge University Press, 1992: 254

[15] Kurz W, Fisher D J. Fundamentals of Solidification. 4nd Ed. Switzerland: Trans Tech Publications Ltd., 2005: 108

[16] Fu H Z, Guo J J, Liu L, Li J S. Directional Solidification and Processing of Advanced Materials, Beijing: Science Press, 2008: 308

(傅恒志, 郭景杰, 刘 林, 李金山. 先进材料定向凝固, 北京: 科学出版社, 2008: 308)

[17] Trivedi R, Magnin P, Kurz W. Acta Metall, 1987; 35: 971

[18] Boettinger W J, Coriell S R, Trivedi R. Rapid Solidification Processing: Principles and Technology IV. Bataon Rouge LA: Clatitor’s Publishing Division, 1988: 13

[19] Li M, Kuribayashi K. Metall Mater Trans, 2003; 34A: 2999

[20] Liu R, Volkmann T, Herach M. Acta Mater, 2001; 49439

[21] Umeda T, Okane T, Kurz W. Acta Mater, 1996; 44: 4209

[22] Hu H Q. Theory of Metal Solidification, 2nd Ed. Beijing: China Machine Press, 2007: 168

(胡汉起. 金属凝固原理. 北京: 机械工业出版社, 2007: 168)

[23] Ohno A. translated by Xing J D, Solidification of Metals: Theory, Practice and Application. Beijing: China Machine Press, 1990: 117

(Ohno A, 刑建东 译. 金属的凝固---理论、实践及应用. 北京: 机械工业出版社, 1990: 117)

[24] Stefanescu D M. Science and Engineering of Casting Solidification, 2nd Ed. Berlin: Springer, 2009: 195
[1] 张蕾, 赵红蕾, 朱鸣芳. 球墨铸铁凝固显微组织的元胞自动机模拟*[J]. 金属学报, 2015, 51(2): 148-158.