Please wait a minute...
金属学报  2011, Vol. 47 Issue (6): 720-726    DOI: 10.3724/SP.J.1037.2010.00695
  论文 本期目录 | 过刊浏览 |
Q&P工艺处理低碳CrNi3Si2MoV钢中马氏体的研究
王存宇,时捷,曹文全,惠卫军,王毛球,董瀚
钢铁研究总院结构材料研究所, 北京 100081
STUDY ON THE MARTENSITE IN LOW CARBON CrNi3Si2MoV STEEL TREATED BY Q&P PROCESS
WANG Cunyu, SHI Jie, CAO Wenquan, HUI Weijun, WANG Maoqiu, DONG Han
Institute for Structural Materials, Central Iron & Steel Research Institute, Beijing 100081
引用本文:

王存宇 时捷 曹文全 惠卫军 王毛球 董瀚. Q&P工艺处理低碳CrNi3Si2MoV钢中马氏体的研究[J]. 金属学报, 2011, 47(6): 720-726.
, , , , , . STUDY ON THE MARTENSITE IN LOW CARBON CrNi3Si2MoV STEEL TREATED BY Q&P PROCESS[J]. Acta Metall Sin, 2011, 47(6): 720-726.

全文: PDF(3218 KB)  
摘要: 通过SEM, TEM, EBSD和纳米硬度等多种手段对经Q&P(quenching and partitioning)工艺处理的低碳 CrNi3Si2MoV钢中的马氏体进行了表征, 并探讨马氏体在单轴拉伸过程中的作用. 研究结果表明: 一次马氏体发生了C配分和回火析出现象, 容易腐蚀;二次马氏体呈淬火态特征, 由1个马氏体领域构成, 板条尺寸较小, 约为0.1-0.2μm,C含量和纳米硬度均高于一次马氏体, 在变形过程中能够协同组织变形,起到强化作用, 而氧化物夹杂和大尺寸的析出物是微裂纹产生和扩展的主要原因.
关键词 马氏体 残留奥氏体 Q&P工艺 力学性能 高强度钢    
Abstract:The martensite in low carbon CrNi3Si2MoV steel treated by Q&P (quenching and partitioning) process was characterized by means of SEM, TEM, EBSD and nano intender. The effect of martensite on uniaxial tension behaviors was discussed. The results showed that initial martensite phase formed at the first quenching step, whose carbon content was lowered due to its carbon diffusion into untransformed austenite during partitioning step. However, the martensite phase formed at the final quenching steconsisted of only one single set of packet with lath thicknes about 0.1—0.2 μm, which was thinner than that of the initial martensie lath. It was found that the carbon content and hardness of the martenite formed in the final quenching step were higher than thoe of initial martensite, which deformed cooperatively with other phases and played a role of strengthening phase during deformation process. In addition, large sized carbonitride and oxide pecipitations induced nucleation and exansion of crack during deformation rocess.
Key wordsmartensite    retained austenite         Q&P process         mechanical property    high strength steel
收稿日期: 2010-12-23     
ZTFLH: 

TG113.12

 
基金资助:

国家重点基础研究发展计划项目2010CB630803和国家高技术研究发展计划项目2009AA033401资助

作者简介: 王存宇, 男, 1979年生, 博士
[1] Edmonds D V, He K Rizzo F C, Cooman B C De, Matlock D K, Speer J G. Mater Sci Eng, 2006; A438–440: 25

[2] Hsu T Y. Heat Treat, 2007; 22: 1

(徐祖耀. 热处理, 2007, 22: 1)

[3] Rizzo F, Martins A R, Speer J G. Mater Sci Forum, 2007;539–543: 4476

[4] Zhong N, Wang X D, Huang B X, Rong Y H, Wang L. In: Lee H C ed., The 3rd International Coference on Advanced Structural Steels, Gyeongju: The Korean Institute of Metals and Materials, 2006: 885

[5] DeCooman B C, Speer J G. In: Lee H C eds, The 3rd International Cnferece on Advanced Structural Steels, Gyeongju: The Korean Institute of Metals and Materials, 2006: 798

[6] Wang C Y, Shi J, Cao W Q, Dong H. Trans Mater Heat Treat, 2010; 31(6): 83

(王存宇, 时捷, 曹文全, 董瀚. 材料热处理学报, 2010; 31(6): 83)

[7] Wang C Y. PhD Thesis. Central Iron & Steel Research Institute, Beijing, 2010

(王存宇. 钢铁研究总院博士学位论文, 北京, 2010)

[8] Matlock D K, Brautigam V E, Speer J G. Mater Sci Forum, 2003; 426–432: 1089

[9] Gerdeman F L H, Speer J G, Matlock D K. In: Margaret A B ed., Materials Science and Technology Conference Proceedings, New Orleans: Association for Iron and Steel Technology, 2004: 439

[10] MaM T,Wu B R. Dual Phase Steel–Physical and Mechanical Metallurgy, Beijing: Metallurgical Industry Press,2009: 117

(马鸣图, 吴宝榕. 双相钢--物理和力学冶金. 北京: 冶金工业出版社, 2009: 117)

[11] Hsu T Y. Martensitic Transformation and Martensite. 2nd Ed, Beijing: Science Press, 1999: 228

(徐祖耀. 马氏体相变与马氏体. 第二版. 北京: 科学出版社, 1999: 228)

[12] Yu D G. Fe–base Martensitic Aging–Tempering Transformation Theory and the Strength and Toughness. Shanghai: Shanghai Jiaotong University Press, 2008: 194

(俞德刚. 铁基马氏体时效--回火转变理论及其强韧性. 上海: 上海交通大学出版社, 2008: 194)

[13] Wang C Y, Shi J, CaoWQ, Dong H. Mater Sci Eng, 2010; A527: 3442

[14] Cox T B, Low J R. Metall Trans, 1974; 5: 1457

[15] Quentin Furnemont. PhD Thesis, Universit´e catholique de Louvain, 2003

[16] Pascal Jacques. PhD Thesis, Universit´e catholique de Louvain, 1998

[17] Marder A R, Krauss G. Trans ASM, 1969; 62: 957

[18] Krauss G, Marder A R. Metall Trans, 1971; 2: 2343

[19] Marder J M, Marder A R. Trans ASM, 1969; 62: 1

[20] Su D D, Li J J. High–Temperature Metallography of Steel In situ Observation of Phase Transformation, Tianjin:Tianjin university Press, 2007: 144

(苏德达, 李家俊. 钢的高温金相学--钢的相变过程原位观察. 天津: 天津大学出版社, 2007: 144)

[21] Morito S, Saito H, Ogawa T, Furuhara T, Maki T. ISIJ Int, 2005; 45: 91

[22] Erdogan M. J Mater Sci, 2002; 37: 3623

[23] Hasegawa K, Kawamura K, Urabe T. ISIJ Int, 2004; 44: 603

[24] Pychmintsev I Y, Savrai R A, DeCooman B C. In: Decooman B C ed. Conference on TRIP–Aided High Strength Ferrous Alloys, Ghent: Mainz in Aachen, 2002: 79

[25] Hu G X. Metallography. Shanghai: Shanghai Scientific & Technical Publishers, 1980: 260

(胡庚祥, 金属学. 上海: 上海科学技术出版社, 1980: 260)

[26] Tvergaard V. Adv Appl Mech, 1990; 27: 83

[27] McMeeking R M. J Mech Phys Solids, 1977; 25: 357

[28] Xia L, Shih C F. J Mech Phys Solids, 1996; 44: 603

[29] Xia L, Shih C F. J Mech Phys Solids, 1995; 43: 233
[1] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[2] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[3] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[4] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[5] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[6] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[7] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[8] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[9] 王周头, 袁清, 张庆枭, 刘升, 徐光. 冷轧中碳梯度马氏体钢的组织与力学性能[J]. 金属学报, 2023, 59(6): 821-828.
[10] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[11] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[12] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[13] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[14] 王滨, 牛梦超, 王威, 姜涛, 栾军华, 杨柯. Cu马氏体时效不锈钢的组织与强韧性[J]. 金属学报, 2023, 59(5): 636-646.
[15] 李述军, 侯文韬, 郝玉琳, 杨锐. 3D打印医用钛合金多孔材料力学性能研究进展[J]. 金属学报, 2023, 59(4): 478-488.