Please wait a minute...
金属学报  2011, Vol. 47 Issue (6): 671-677    DOI: 10.3724/SP.J.1037.2010.00663
  论文 本期目录 | 过刊浏览 |
板坯连铸结晶器内钢凝固过程热行为研究 I. 数学模型
蔡兆镇,朱苗勇
东北大学材料与冶金学院, 沈阳 110004
SIMULATION OF THERMAL BEHAVIOR DURING STEEL SOLIDIFICATION IN SLAB CONTINUOUS CASTING MOLD I. Mathematical Model
CAI Zhaozhen, ZHU Miaoyong
School of Materials and Metallurgy, Northeastern University, Shenyang 110004
引用本文:

蔡兆镇 朱苗勇. 板坯连铸结晶器内钢凝固过程热行为研究 I. 数学模型[J]. 金属学报, 2011, 47(6): 671-677.
, . SIMULATION OF THERMAL BEHAVIOR DURING STEEL SOLIDIFICATION IN SLAB CONTINUOUS CASTING MOLD I. Mathematical Model[J]. Acta Metall Sin, 2011, 47(6): 671-677.

全文: PDF(2637 KB)  
摘要: 建立了伴随δ/γ相变的钢凝固过程两相区溶质微观偏析模型,以其所确立的钢凝固过程各相分数与温度之间的关系获得钢的高温物性参数,并根据连铸坯在结晶器内凝固收缩量与结晶器内表面的位移关系、保护渣的液/固状态及厚度分布、铸坯表面和铜板热面的温度分布以及气隙的动态变化等建立了描述坯壳--铜板界面热流的数学模型. 在此基础上, 运用率相关本构模型,采用顺序耦合法建立了描述板坯连铸结晶器内钢凝固过程热行为的二维瞬态热/力耦合有限元分析模型.
关键词 板坯连铸 结晶器 保护渣 δ/γ相变, 热行为    
Abstract:Thermal behavior of the solidifying shell in continuous casting mold is very important to final steel products. In the present work, one two–dimension transient thermal–mechanical coupling finite element model was developed to simulate the thermal behavior of steel solidifying in slab continuous casting mold by using the sequential coupling method. In this model, in order to get the physical properties of steel at high temperature, a microsegregation model which would give the relationship of phase fractions and temperature for acquiring the physical properties with δ/γ  transformation in mushy zone was established. And the heat flux was obtained according to the displacement between the surface of solidifying shell and the hot face of mold as solidification contraction, the liquid/solid structure and distribution of mold flux, the temperature distribution of slab surface and mold hot face, and air gap distribution. In addition, the rate–dependent elastic–viscoplastic constitutive equation was applied to account for the evolution of shell stress in the mold.
Key wordsslab continuous casting    mold    mold flux     δ/γ  transformation    thermal behavior
收稿日期: 2010-12-09     
基金资助:

国家杰出青年科学基金项目50925415和教育部基本科研业务费项目N100102001资助

作者简介: 蔡兆镇, 男, 1982年生, 博士生
[1] Jing D J, Cai K K. Acta Metall Sin, 2000; 36: 403

(荆德君, 蔡开科. 金属学报, 2000; 36: 403)

[2] Jing D J, Cai K K. J Univ Sci Technol Beijing, 2000; 22: 417

(荆德君, 蔡开科. 北京科技大学学报, 2000; 22: 417)

[3] Wang E G, He J C. Sci Technol Adv Mater, 2001; 2: 257

[4] Savage J, Prichard W H. J Iron and Steel Inst, 1954; 178: 91

[5] Han H N, Lee J E, Yeo T, Won Y M, Kim K H, Oh K H, Yoon J K. ISIJ Int, 1999; 39: 445

[6] Kim K, Han H N, Yeo T, Lee Y, Oh K H, Lee D N. Ironmaking Steelmaking, 1997; 24: 249

[7] Li C S, Thomas B G. Metall Trans, 2004; 35B: 1151

[8] Meng Y, Li C S, Parkman J, Thomas B G. In: Rappaz M ed., Solidification Processes and Microstructures, Charlotte: TMS, 2004: 33

[9] Stone D T, Thomas B G. Can Metall Q, 1999; 38: 363

[10] Ueshima Y, Mioguchi S, Matsumiya T, Kajioka H. Metall Trans, 1986; 17B: 945

[11] EL–Bealy M, Thomas B G. Metall Trans, 1996; 27B: 689

[12] Kawawa T. Tekko–Binran (Handbook for Steel). 3rd Ed. Tokyo: ISIJ, 1981: 205

[13] Nakada H, Susa M, Seko Y, Hayashi M, Nagata K. ISIJ Int, 2008; 48: 446

[14] Watanabe K, Suzuki M, Murakami K, Kondo H, Miyamoto A, Shiomi T. Tetsu Hagan´e, 1997; 83: 115

(渡边圭旧, 铃木真, 村上腾彦, 近藤裕计, 宫本明,yun见刚温,铁と钢, 1997; 83: 115)

[15] Saraswat R, Maijer D M, Lee P D, Mills K C. ISIJ Int, 2007; 47: 95

[16] Tsutsumi K, Nagasaka T, Hino M. ISIJ Int, 1999; 39: 1150

[17] Cho J W, Shibata H, Emi T. ISIJ Int, 1998; 38: 440

[18] Shibata H, Kondo K, Suzuki M, Emi T. ISIJ Int, 1996; 36(Suppl.): S179

[19] Yamauchi A, SorimachK, SakuryT, Fujii T. Tetsun Hagan´e, 1993; 79: 167

(山内章, 反町健一, sui谷敏和, 藤井彻也. 铁と钢; 1993, 79: 167)

[20] Cho J W, Emi T, Shibata H, Suzuki M. ISIJ Int, 1998;38: 834

[21] Xu S L. Algorithm Commonly Used Procedures Set (C Description Language). 3rd Ed, Beijing: Tsinghua University press, 2004: 188

(徐士良. 常用算法程序集(C语言描述)(第三版), 北京: 清华大学出版社,2004: 188)

[22] Yamauchi A, Emi T, Seetharaman S. ISIJ Int, 2002; 42: 1084

[23] Anand L. Trans ASME, 1982; 104: 12

[24] Brown S B, Kim K H, AnanL. Int J Plast, 1989; 5: 95

[25] Clyne T W, Wolf M, Kurz W. Metall Trans, 1982; 13B: 259

[26] Davies G J, Shin Y K. Solidification Technology in the Foundry and Cast House. London: The Metal Society, 1979: 517

[27] Kim K, Yeo T, Oh K H, Lee D N. ISIJ Int, 1996; 36: 284

[28] Matsumiya T, Saeki T, Tanaka J, Ariyoshi T. Tetsu Hagan´e, 1982; 68: 1782

(松宫彻, 佐伯毅,田中純, 有吉敏彦. 铁と钢, 1982, 68: 1782)
[1] 彭治强, 柳前, 郭东伟, 曾子航, 曹江海, 侯自兵. 基于大数据挖掘的连铸结晶器传热独立变化规律[J]. 金属学报, 2023, 59(10): 1389-1400.
[2] 刘中秋, 李宝宽, 肖丽俊, 干勇. 连铸结晶器内高温熔体多相流模型化研究进展[J]. 金属学报, 2022, 58(10): 1236-1252.
[3] 李德伟,苏志坚,陈进,王强,丸川雄净,赫冀成. 钢圆坯连铸过程中渐开式电磁旋流水口数值模拟[J]. 金属学报, 2013, 49(7): 871-880.
[4] 刘中秋,李宝宽,姜茂发,张立,徐国栋. 连铸结晶器内氩气/钢液两相非稳态湍流特性的大涡模拟研究[J]. 金属学报, 2013, 49(5): 513-522.
[5] 贾皓 张振强 于湛 邓康 雷作胜 任忠鸣. FC Mold II电磁制动中磁场匹配对金属液流影响[J]. 金属学报, 2012, 48(9): 1049-1056.
[6] 陈芝会 王恩刚 张兴武 王元华 朱明伟 赫冀成. 行波磁场下吹Ar过程中结晶器内气泡行为的研究[J]. 金属学报, 2012, 48(8): 951-956.
[7] 李宝宽 刘中秋 齐凤升 王芳 徐国栋. 薄板坯连铸结晶器非稳态湍流大涡模拟研究[J]. 金属学报, 2012, 48(1): 23-32.
[8] 蔡兆镇 朱苗勇. 板坯连铸结晶器内钢凝固过程热行为研究  II. 模型验证与结果分析[J]. 金属学报, 2011, 47(6): 678-687.
[9] 王寅 张振强 于湛 贾皓 邓康 雷作胜 任忠鸣. 射流型磁场排布方式控制结晶器内液流的实验研究[J]. 金属学报, 2011, 47(10): 1285-1291.
[10] 于湛 张振强 任忠鸣 雷作胜 邓康. 板坯电磁制动结晶器内流体流动的研究[J]. 金属学报, 2010, 46(10): 1275-1280.
[11] 许秀杰 邓安元 王恩刚 张林涛 张兴武 张永杰 赫冀成. 电磁软接触连铸圆坯表面振痕演变机理[J]. 金属学报, 2009, 45(4): 464-469.
[12] 于海岐 朱苗勇. 板坯连铸结晶器内钢液过热消除过程的数值模拟[J]. 金属学报, 2009, 45(4): 476-484.
[13] 孟祥宁 朱苗勇. 高拉速板坯连铸结晶器液态渣消耗机理分析[J]. 金属学报, 2009, 45(4): 485-489.
[14] 许秀杰 邓安元 王恩刚 张林涛 张永杰 赫冀成. 高频电磁场对15CrMo连铸坯表面质量和等轴晶率的影响机理[J]. 金属学报, 2009, 45(11): 1330-1335.
[15] 于海岐; 朱苗勇 . 板坯结晶器电磁制动和吹氩过程的钢/渣界面行为[J]. 金属学报, 2008, 44(9): 1141-1148 .