Please wait a minute...
金属学报  2011, Vol. 47 Issue (3): 361-366    DOI: 10.3724/SP.J.1037.2010.00636
  论文 本期目录 | 过刊浏览 |
冷加工对含Mn铝合金管腐蚀行为的影响
王冠1,林晓群2
1.广东工业大学机电学院, 广州 510006
2.广东交通集团广东省公路建设有限公司, 广州 510600
EFFECT OF COLD DEFORMATION ON THE CORROSION BEHAVIOUR OF Mn–CONTAINING ALUMINIUM ALLOY TUBE
WANG Guan1, LIN Xiaoqun2
1.Institute of Mechatronics, Guangdong University of Technology, Guangzhou 510006
2.Guangdong Road Construction Co. Ltd, Guangzhou 510600
引用本文:

王冠 林晓群. 冷加工对含Mn铝合金管腐蚀行为的影响[J]. 金属学报, 2011, 47(3): 361-366.
, , . EFFECT OF COLD DEFORMATION ON THE CORROSION BEHAVIOUR OF Mn–CONTAINING ALUMINIUM ALLOY TUBE[J]. Acta Metall Sin, 2011, 47(3): 361-366.

全文: PDF(1468 KB)  
摘要: 采用SEM, TEM, 动电位极化和浸泡实验研究了机械冷加工变形对汽车散热器高Mn(0.22%, 质量分数, 下同)和低Mn(0.08%)铝合金管在0.6 mol/L NaCl (pH=6)和SWAAT (ASTM G85, pH=3) 溶液中的腐蚀行为的影响. 电化学极化测试表明, 无形变时高Mn铝合金直管的点蚀电位最高; 但冷加工能降低高Mn铝合金弯曲表面的点蚀电位, 而对低Mn铝合金的点蚀电位没有明显影响. TEM观察发现, 冷加工后高Mn铝合金中有大量纳米尺度的富Mn析出相, 在低Mn铝合金中却没有观察到这种析出相. 阴极极化测试表明, 富Mn相能显著促进阴极反应, 富Mn相相对Al基体为阴极相, 因而是点蚀萌生的部位. 添加Mn尽管有利于提高铝合金的耐蚀性, 但机械冷加工会弱化这一效应.
关键词 含Mn铝合金 腐蚀 机械冷弯曲 微观结构    
Abstract:Aluminium alloys are extensively employed as heat transfer tube materials in heat exchangers. Previous work has focused on the corrosion behaviour of tube materials in brazed heat exchangers. However, very little attention has been devoted to corrosion of tubes in mechanically–expanded heat exchangers despite the observation of some instances of early corrosion failure in bent region of aluminium alloy tube. The effects of cold deformation on the corrosion behaviour of aluminium tube materials have been studied in 0.6 mol/L NaCl and SWAAT solutions by SEM, TEM, potentiodynamic polarizations and immersion test. The results show that high Mn content (0.22%, mass fraction) can experience preferential corrosion and early failure in the bent region, but not for one with a lower Mn content (0.08%). SEM/TEM observations of the microstructure of the alloys show that each alloy has one main type of coarse intermetallic particle. However, TEM observations show that there is a distinct difference in particle morphology between the bent and straight regions of the high Mn alloy tube, the ent region has more nano–scale Mn–rich particles than the straight region, and no such effects are observed on the low Mn alloy. The microelectrochemical polarisation measurements show that the straight region of high Mn has highest pitting potential, but cold deformation can decrease the pitting potential of bent region of high Mn tube, but no such effects on low Mn tube. The immersion test shows that the bent region of high Mn alloy has highest attack; this is associated with precipitation of 20—100 nm Mn–rich particles, which cause increased anodic reactivity as they provide further pit initiation sites and cause solute depletion in the matrix. In addition, the Mn–rich particles are aso sites for enhanced cthodic reactivity. The relationship between the microstructure and electrochemicaproperties of tube materials before and after cold deformation is established. The results indicate Mn can improve the corrosion resistance of aluminium alloy, but the mechanical cold deformation will weaken the effect.
Key wordsMn-containing aluminium alloy    corrosion    cold deformation    microstructure
收稿日期: 2010-11-29     
作者简介: 王冠, 男, 1979年生, 博士
[1] Zamin M. Corrosion, 1981; 37: 627

[2] Afseth A, Nordlien J H, Scamans G M, Nisancioglu K. Corros Sci, 2002; 44: 2543

[3] Afseth A, Nordlien J H, Scamans G M, Nisancioglu K. Corros Sci, 2002; 44: 2491

[4] Steven M. PhD Thesis, Delft University of Technology, 2002

[5] Marshall G J, Bolingbroke R K, Gray A. Metall Mater Trans, 1993; 24A: 1935

[6] Polmear I J. Light Alloys: Metallurgy of the Light Metals. Suffolk: St Edmundsbury Press Ltd., 1995: 24

[7] Budgen N F. Aluminium and its Alloys. London: Pitman, 1947: 10

[8] Wang G. PhD Thesis, University of Birmingham, 2007

[9] Senkov O N, Fores F H, Stolyarov V V, Valiev R Z, Liu J. Nanostruct Mater, 1998; 10: 691

[10] Ambat R, Davenport A J, Afseth A, Scamans G. J Electrochem Soc, 2004; 151: B53

[11] Nisancioglu K. J Electrochem Soc, 1990; 137: 69

[12] Afseth A, Nordlien J H, Scamans G M, Nisancioglu K. Corros Sci, 2001; 43: 2093

[13] Afseth A, Nordlien J H, Scamans G M, Nisancioglu K. Corros Sci, 2002; 44: 145

[14] Luiggi N J. Metall Mater Trans, 1997; 28B: 125

[15] Luiggi N J. Z Metallkd, 1997; 88: 274

[16] Luiggi N J. Metall Mater Trans, 1997; 28B: 149

[17] Chen S P, Kuijpers N C W, Van Der Zwaag S. Mater Sci Eng, 2003; A341: 296

[18] Nisancioglu K, Lunder O. Aluminium Alloys Physical and Mechanical Properties. Manchester: Engineering Materials Advisory Service Ltd., 1996: 1125
[1] 李小涵, 曹公望, 郭明晓, 彭云超, 马凯军, 王振尧. 低碳钢Q235、管线钢L415和压力容器钢16MnNi在湛江高湿高辐照海洋工业大气环境下的初期腐蚀行为[J]. 金属学报, 2023, 59(7): 884-892.
[2] 张奇亮, 王玉超, 李光达, 李先军, 黄一, 徐云泽. EH36钢在不同粒径沙砾冲击下的冲刷腐蚀耦合损伤行为[J]. 金属学报, 2023, 59(7): 893-904.
[3] 王宗谱, 王卫国, Rohrer Gregory S, 陈松, 洪丽华, 林燕, 冯小铮, 任帅, 周邦新. 不同温度轧制Al-Zn-Mg-Cu合金再结晶后的{111}/{111}近奇异晶界[J]. 金属学报, 2023, 59(7): 947-960.
[4] 司永礼, 薛金涛, 王幸福, 梁驹华, 史子木, 韩福生. Cr添加对孪生诱发塑性钢腐蚀行为的影响[J]. 金属学报, 2023, 59(7): 905-914.
[5] 陈润农, 李昭东, 曹燕光, 张启富, 李晓刚. 9%Cr合金钢在含Cl环境中的初期腐蚀行为及局部腐蚀起源[J]. 金属学报, 2023, 59(7): 926-938.
[6] 赵平平, 宋影伟, 董凯辉, 韩恩厚. 不同离子对TC4钛合金电化学腐蚀行为的协同作用机制[J]. 金属学报, 2023, 59(7): 939-946.
[7] 张德印, 郝旭, 贾宝瑞, 吴昊阳, 秦明礼, 曲选辉. Y2O3 含量对燃烧合成Fe-Y2O3 纳米复合粉末性能的影响[J]. 金属学报, 2023, 59(6): 757-766.
[8] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[9] 王京阳, 孙鲁超, 罗颐秀, 田志林, 任孝旻, 张洁. 以抗CMAS腐蚀为目标的稀土硅酸盐环境障涂层高熵化设计与性能提升[J]. 金属学报, 2023, 59(4): 523-536.
[10] 韩恩厚, 王俭秋. 表面状态对核电关键材料腐蚀和应力腐蚀的影响[J]. 金属学报, 2023, 59(4): 513-522.
[11] 吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.
[12] 常立涛. 压水堆主回路高温水中奥氏体不锈钢加工表面的腐蚀与应力腐蚀裂纹萌生:研究进展及展望[J]. 金属学报, 2023, 59(2): 191-204.
[13] 廖京京, 张伟, 张君松, 吴军, 杨忠波, 彭倩, 邱绍宇. Zr-Sn-Nb-Fe-V合金在过热蒸汽中的周期性钝化-转折行为[J]. 金属学报, 2023, 59(2): 289-296.
[14] 夏大海, 计元元, 毛英畅, 邓成满, 祝钰, 胡文彬. 2024铝合金在模拟动态海水/大气界面环境中的局部腐蚀机制[J]. 金属学报, 2023, 59(2): 297-308.
[15] 胡文滨, 张晓雯, 宋龙飞, 廖伯凯, 万闪, 康磊, 郭兴蓬. 共晶高熵合金AlCoCrFeNi2.1H2SO4 溶液中的腐蚀行为[J]. 金属学报, 2023, 59(12): 1644-1654.