Please wait a minute...
金属学报  2011, Vol. 47 Issue (5): 540-547    DOI: 10.3724/SP.J.1037.2010.00494
  论文 本期目录 | 过刊浏览 |
激光快速熔凝Ni-Sn共晶合金的组织演变
曹永青, 林鑫, 汪志太, 杨海欧, 黄卫东
西北工业大学凝固技术国家重点实验室, 西安 710072
MICROSTRUCTURE EVOLUTION OF Ni-Sn EUTECTIC ALLOY IN LASER RAPID SOLIDIFICATION
CAO Yongqing, LIN Xin, WANG Zhitai, YANG Haiou, HUANG Weidong
State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072
引用本文:

曹永青 林鑫 汪志太 杨海欧 黄卫东. 激光快速熔凝Ni-Sn共晶合金的组织演变[J]. 金属学报, 2011, 47(5): 540-547.
, , , , . MICROSTRUCTURE EVOLUTION OF Ni-Sn EUTECTIC ALLOY IN LASER RAPID SOLIDIFICATION[J]. Acta Metall Sin, 2011, 47(5): 540-547.

全文: PDF(1241 KB)  
摘要: 采用Ni--28\%Sn, Ni--30\%Sn, Ni--33\%Sn和Ni--35\%Sn(质量分数)共4种成分的亚共晶和过共晶合金, 考察了Ni--Sn共晶合金在激光快速熔凝过程中的组织演化过程. 当激光扫描速率较低时, Ni--28\%Sn亚共晶合金和Ni--35\%Sn过共晶合金的熔凝组织主要由细化的初生枝晶(亚共晶合金为α-Ni相, 过共晶合金为Ni3Sn相)和枝晶间共晶(α-Ni+Ni3Sn)组成; 近共晶合金Ni-30%Sn和Ni-33%Sn的熔凝组织基本相似, 熔池从底部到顶部存在柱状共晶团向等轴状共晶团的转变. Ni-Sn亚共晶和过共晶合金熔池底部皆存在少量粗大的残留初生相. 激光快速熔凝后, 相比基材中所存在的层片和棒状共晶的混合组织, 熔池内的共晶组织皆为层片状共晶, 层片间距相比基材明显减小, 并呈现垂直于熔池底部外延生长的特征. 通过对比4种成分合金在不同激光扫描速率下的熔凝组织, 获得了激光快速熔凝条件下 Ni-Sn合金共生生长区的成分范围以及临界激光扫描速率. 应用描述快速枝晶生长的 KGT模型和快速共晶生长的TMK模型对熔凝组织进行了分析, 模型计算结果与实验结果符合良好.
关键词 激光快速熔凝Ni-Sn合金共晶组织演变    
Abstract:The microstructure evolution of Ni–Sn alloys (Ni–28%Sn, Ni–30%Sn, Ni–33%Sn and Ni–35%Sn) near eutectic during laser rapid solidification has been investigated. In low velocity laser scanning, the microstructures of Ni–28%Sn and Ni–35%Sn hypereutetic alloys consist of refined primary dendritic phase, which is α–Ni phase for the former and Ni3Sn phase for the latter, and (α–Ni+Ni3Sn) eutectic phase. However, the microstructures of Ni–30%Sn and Ni-33%Sn near–eutectic alloys consist completely of (α–Ni+Ni3Sn) eutectic, and they undergo a morphological transition from the columnar to equiaxed eutectic from bottom to the top of molten pool. There is a small amount of residual coarse primary dendritic phase of substrate in the bottom of molten pool for these four Ni–Sn alloys. With increasing laser scanning velocity, compared with the mixed lamella and rod eutectic microstructures in the substrates, for these alloys eutectic in molten pool is completely composed of lamella eutectic, and lamella eutectic spacing is reduced significantly after laser rapid solidification. Besides, lamella eutectic in molten pool grows epitaxially along the normal to the molten pool interface with the substrate. Moreover, the composition range and the critical laser scanning velocity are also obtained for coupled eutectic growth during laser rapid solidification. In the present work, further analysis of microstructure evolution is given by using KGT and TMK models, showing a good agreement between the simulated and the experimental results.
Key wordslaser rapid solidification    Ni-Sn alloy    eutectic    microstructure evolution
收稿日期: 2010-09-25     
基金资助:

国家自然科学基金项目50971102, 高等学校学科创新引智计划项目08040, 西北工业大学基础研究基金项目NPU-FFR-JC200808及凝固技术国家重点实验室自主研究课题项目16-TZ-2007和39-QZ-2009资助

作者简介: 曹永青, 女, 1986年生, 硕士生
[1] Powell G L, Hogan L M. Inst Met, 1965; 93: 505

[2] Kattamis T Z, Fleming M C. Metall Trans, 1970; 1: 1449

[3] Jones B L. Metall Trans, 197l; 2: 2950

[4] Wei B, Herlach D M, Feuerbacher B, Sommer F. Acta Metall Mater, 1993; 41: 1801

[5] Wei B, Herlach D M, Sommer F, Kurz W. Mater Sci Eng, 1994; A181: 1150

[6] Goetzinger R, Barth M, Herlach D M. Acta Mater, 1998; 46: 1647

[7] Wei B, Yang G C, Zhou Y H. Acta Metall Mater, 1991; 39: 1249

[8] Wei B, Herlach D M, Sommer F. Mater Sci Lett, 1993; 12: 1774

[9] Xing L Q, Zhao D Q, Chen X C. Mater Sci, 1993; 28: 2733

[10] Tewari S N. Metall Trans, 1987; 18A: 525

[11] Chu M G, Shiohara Y. Metall Trans, 1984; 15A: 1303

[12] Lu Y P, Liu F, Yang G C, Zhou Y H. Appl Phys Lett, 2006; 89: 241902

[13] Li M J, Nagashio K, Ishikawa T, Yoda S, Kuribayashi K. Acta Mater, 2005; 53: 731

[14] Li J F, JieWQ, Zhao S, Zhou Y H. Metall Mater Trans, 2007; 38A: 1806

[15] Li J F, Li X L, Liu L, Lu S Y. Mater Res Soc, 2008; 23: 2139

[16] Rappaz M, Gremaud M, Dekumbis R, Kurz W. In: Mordike B L ed., Laser Treatment of Materials, Oberursel: DGM Informations gesellschaft–Verlay, 1987: 43

[17] GaumannM, Bezencqn C, Canalis P, Kurz W. Acta Mater, 2001; 49: 1051

[18] Rappaz M, David S A, Vitek J M, Boatner L A. Metall Trans, 1989; 20A: 1125

[19] Kurz W, Fisher D J. Fundamentals of Solidification, 3rd Ed. Switzerland: Trans Tech Publications, 1992: 83

[20] Trivedi R, Kurz W. Acta Metal Mater, 1994; 42: 15

[21] Hoadley A F A, Rappaz A. Metal Trans, 1992; 23B: 631

[22] Lin X, Yue T M, Yang H O, Huang W D. Acta Mater, 2006; 54: 1901

[23] Kurz W, Giovanola B, Trivedi R. Acta Metall, 1986; 34: 823

[24] Aziz M J. Appl Phys, 1982, 53: 1158

[25] Boettinger W J, Coriell S R, Trivedi R. Rapid Solidification Processing: Principles and Technologies IV. Baton Rouge, LA: Claitor’s Publishing Division, 1988: 13

[26] Brandes E A. Smithells Metals Reference Book. Bodmin, Cornwall: Butterworth & Co. Ltd, 1983: 41

[27] Trivedi R, Magnin P, Kurz W. Acta Metall, 1987; 35: 971
[1] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[3] 王法, 江河, 董建新. 高合金化GH4151合金复杂析出相演变行为[J]. 金属学报, 2023, 59(6): 787-796.
[4] 苗军伟, 王明亮, 张爱军, 卢一平, 王同敏, 李廷举. AlCr1.3TiNi2 共晶高熵合金的高温摩擦学性能及磨损机理[J]. 金属学报, 2023, 59(2): 267-276.
[5] 胡文滨, 张晓雯, 宋龙飞, 廖伯凯, 万闪, 康磊, 郭兴蓬. 共晶高熵合金AlCoCrFeNi2.1H2SO4 溶液中的腐蚀行为[J]. 金属学报, 2023, 59(12): 1644-1654.
[6] 张丽丽, 吉宗威, 赵九洲, 何杰, 江鸿翔. 亚共晶Al-Si合金中微量元素La变质共晶Si的关键影响因素[J]. 金属学报, 2023, 59(11): 1541-1546.
[7] 方远志, 戴国庆, 郭艳华, 孙中刚, 刘红兵, 袁秦峰. 激光摆动对激光熔化沉积钛合金微观组织及力学性能的影响[J]. 金属学报, 2023, 59(1): 136-146.
[8] 李钊, 江河, 王涛, 付书红, 张勇. GH2909低膨胀高温合金热处理中的组织演变行为[J]. 金属学报, 2022, 58(9): 1179-1188.
[9] 梁琛, 王小娟, 王海鹏. 快速凝固Ti-Al-Nb合金B2相形成机制与显微力学性能[J]. 金属学报, 2022, 58(9): 1169-1178.
[10] 冯迪, 朱田, 臧千昊, 李胤樹, 范曦, 张豪. 喷射成形过共晶AlSiCuMg合金的固溶行为[J]. 金属学报, 2022, 58(9): 1129-1140.
[11] 徐静辉, 李龙飞, 刘心刚, 李辉, 冯强. 热力耦合对一种第四代镍基单晶高温合金1100℃蠕变组织演变的影响[J]. 金属学报, 2021, 57(2): 205-214.
[12] 李娟, 赵宏龙, 周念, 张英哲, 秦庆东, 苏向东. CoCrFeNiCu高熵合金与304不锈钢真空扩散焊[J]. 金属学报, 2021, 57(12): 1567-1578.
[13] 张少华, 谢光, 董加胜, 楼琅洪. 单晶高温合金共晶溶解行为的差热分析[J]. 金属学报, 2021, 57(12): 1559-1566.
[14] 刘超, 姚志浩, 郭婧, 彭子超, 江河, 董建新. 粉末高温合金FGH4720Li在近服役温度下的组织演变规律[J]. 金属学报, 2021, 57(12): 1549-1558.
[15] 马德新, 赵运兴, 徐维台, 皮立波, 李重行. 高温合金单晶铸件中共晶组织分布的表面效应[J]. 金属学报, 2021, 57(12): 1539-1548.