Please wait a minute...
金属学报  2011, Vol. 47 Issue (2): 129-139    DOI: 10.3724/SP.J.1037.2010.00422
  论文 本期目录 | 过刊浏览 |
孔隙对NiTi形状记忆合金中B2-R相变影响的相场模拟
柯常波, 马骁, 张新平
华南理工大学材料科学与工程学院, 广州 510640
PHASE FIELD SIMULATION OF EFFECTS OF PORES ON B2-R PHASE TRANSFORMATION IN NiTi SHAPE MEMORY ALLOY
KE Changbo, MA Xiao, ZHANG Xinping
School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640
引用本文:

柯常波 马骁 张新平. 孔隙对NiTi形状记忆合金中B2-R相变影响的相场模拟[J]. 金属学报, 2011, 47(2): 129-139.
, , . PHASE FIELD SIMULATION OF EFFECTS OF PORES ON B2-R PHASE TRANSFORMATION IN NiTi SHAPE MEMORY ALLOY[J]. Acta Metall Sin, 2011, 47(2): 129-139.

全文: PDF(1637 KB)  
摘要: 建立了适用于含孔隙NiTi合金中B2-R相变的相场模型, 并用该相场模型研究了多孔NiTi合金中B2-R转变的微观组织演化过程以及孔隙率和孔尺寸对R相变体生长动力学行为的影响. 多孔NiTi合金中R相变体以相互协调的方式形成“带状”的三维结构和“鱼骨”状的二维组织, 变体之间形成的孪晶面包括{101}B2和{001}B22种, 4组变体相交于<010>B2; 这些结果与致密NiTi合金B2-R相变过程相同. 多孔NiTi合金中 R相优先在孔周围形核, 且较大的孔周围有较多的变体形核; R相变体的平均尺寸随孔隙率增大而逐渐减小, 随孔径增大而增加; 相对于规则圆孔, 不规则孔隙可导致R相变体尺寸略微减小; 变体的尺寸均匀性则随孔隙率增大而提高, 但对孔径大小和孔形状不敏感; 孔隙数量越多且孔径越小, 则B2-R转变越倾向于产生均匀而细密的R相组织.
关键词 多孔NiTi形状记忆合金B2-R相变生长动力学相场法形貌演化    
Abstract:Recently, porous NiTi shape memory alloys (SMAs) have drawn great interest in various engineering fields, in particular for biomedical applications as one of the promising biomaterials for hard-tissue replacements and orthopedic implants. It is well known that the porous NiTi SMAs exhibit three transformations, B2-B19', B2-R and R-B19'. Among these phase transformations B2-B19' and R-B19' involve high lattice distortion and large transformation hysteresis. Consequently, these distortion and transformations usually introduce structural defects which may result in degradation of mechanical stability for the functional application. On the contrary, B2-R transformation is governed by small lattice distortion which indicates less damage to the microstructure and lower sensitivity to the defects, and thus generates higher reversibility and mechanical stability. Due to these unique virtues, it is of great importance to study the R-phase transformation behavior in porous NiTi SMAs, since the pore has a significant influence on B19' martensitic transformation as well as the R-phase transformation. In this paper, a three-dimensional phase field model aiming at accounting for the pore effect on phase transformation in NiTi SMAs was developed to study the B2-R phase transformation behavior in porous NiTi SMAs. The model was applied to characterize the microstructure evolution of B2-R phase transformation as well as the influence of porosity ratio and pore size on growth kinetics of R-phase variants. The simulation results show that the R-phase variants can form three-dimensional banded structure and two-dimensional herring-bone microstructure through self-accommodation between R-phase variants. The R-phase variants nucleate preferentially around the pores, and there are more R-phase variants to nucleate around the large pores than the smaller ones. Two types of twinning planes are found, which are {101}B2 and {001}B2 respectively, and four variants meet at <010>B2. It has been shown that the average size of R-phase variants decreases with increasing porosity ratio, but increases with increasing pore size. Moreover, the average size of R-phase variants decreases in NiTi system containing irregular pores compared to that the system containing regular circular pores. The size uniformity of R-phase variants increases with increasing porosity ratio but shows no sensitivity to pore size and pore shape. It is also shown that the B2-R transformation can generate uniform and fine R--phase microstructure only when the NiTi matrix contains a large number of small size pores.
Key wordsporous NiTi shape memory alloy    B2-R phase transformation    growth kinetics    phase field approach    morphology evolution
收稿日期: 2010-08-25     
ZTFLH: 

TG142

 
基金资助:

国家自然科学基金项目50871039和50801029及国家建设高水平大学公派研究生项目2008615024资助

作者简介: 柯常波, 男, 1981年生, 博士生
[1] Zhang Y P, Li D S, Zhang X P. Scr Mater, 2007; 57: 1020

[2] Bansiddhi A, Sargeant T D, Stupp S I, Dunand D C. Acta Biomater, 2008; 4: 773

[3] Kim J I, Li Y, Miyazaki S. Acta Mater, 2004; 52: 487

[4] Dautovich D P, Purdy G R. Can Metall Q, 1965; 4: 129

[5] Sandrock G D, Perkins A J, Hehemann R F. Metall Mater Trans, 1971; 2B: 2769

[6] Hwang C M, Meichle M, Salamon M B, WaymanC M. Philos Mag, 1983; 47A: 9

[7] Hwang C M, Meichle M, Salamon M B, WaymanC M. Philos Mag, 1983; 47A: 31

[8] Lin H C,Wu S K, Chou T S, Kao H P. Acta Metall Mater, 1991; 39: 2069

[9] Miyazaki S, Igo Y, Otsuka K. Acta Metall, 1986; 34: 2045

[10] Miyazaki S, Otsuka K. Metall Trans, 1986; 17A: 53

[11] Michutta J, Somsen C, Yawny A, Dlouhy A, Eggeler G. Acta Mater, 2006; 54: 3525

[12] Bataillard L, Bidaux J E, Gotthardt R. Philos Mag, 1998; 78A: 327

[13] Stroz D, Kwarciak J, Morawiec H. J Mater Sci, 1988; 23: 4127

[14] Allafi J K, Ren X, Eggeler G. Acta Mater, 2002; 50: 793

[15] Yuan B, Zhang X P, Chung C Y, Zhu M. Mater Sci Eng, 2006; A438–440: 585

[16] Wu S L, Liu X M, Chu P K, Chuang C Y, Chu C L, Yeung K W K. J Alloys Compd, 2008; 449: 139

[17] Wang Y, Khachaturyan A G. Acta Mater, 1997; 45: 759

[18] Khachaturyan A G. Theory of Structural Transformation in Solids. New York: Wiley–Interscience, 1983: 213

[19] Man J, Zhang J H, Rong Y H. Acta Metall Sin, 2010; 46: 775

(满 蛟, 张骥华, 戎咏华. 金属学报, 2010; 46: 775)

[20] Artemev A, Wang Y, Khachaturyan A G. Acta Mater, 2000; 48: 2503

[21] Jin Y M, Artemev A, Khachaturyan A G. Acta Mater, 2001; 49: 2309

[22] Wang Y, Li J. Acta Mater, 2010; 58: 1212

[23] Ke C B, Ma X, Zhang X P. Acta Metall Sin, 2010; 46: 84

(柯常波, 马骁, 张新平. 金属学报, 2010; 46: 84)

[24] Otsuka K, Ren X. Prog Mater Sci, 2005; 50: 511

[25] Miyazaki S, Wayman C M. Acta Metall, 1998; 36: 181

[26] Li D S, Zhang Y P, Zhang X P. J Alloys Compd, 2009; 474: L1

[27] Wang Y U. Acta Mater, 2006; 54: 953

[28] Wang Y, Ren X, Otsuka K, Saxena A. Acta Mater, 2008; 56: 2885

[29] Man J, Zhang J H, Rong Y H. Appl Phys Lett, 2010; 96: 131904

[30] Bhattacharya K, Kohn R V. Acta Mater, 1996; 44: 529

[31] Wagner M F, Windl W. Acta Mater, 2008; 56: 6232

[32] Wang G, Xu D S, Ma N, Zhou N, Payton E J, Yang R, Mills M J, Wang Y. Acta Mater, 2009; 57: 316

[33] Shen C, Chen Q, Wen Y H, Simmons J P, Wang Y. Scr Mater, 2004; 50: 1023

[34] Shen C, Chen Q, Wen Y H, Simmons J P, Wang Y. Scr Mater, 2004; 50: 1029

[35] Wang Y, Banerjee D, Su C C, Khachaturyan A G. Acta Mater, 1998; 46: 2983

[36] Fukuda T, Saburi T, Doi K, Nenno S. Mater Trans JIM, 1992; 33: 271

[37] Ke C B, Ma X, Zhang X P. Acta Metall Sin, 2010; 46: 921

(柯常波, 马骁, 张新平. 金属学报, 2010; 46: 921)

[38] Ren X, Wang Y, Otsuka K, Lloveras P, Castan T, Porta M, Planes A, Saxena A. MRS Bull, 2009; 34: 838

[39] Ren X, Wang Y, Zhou Y M, Zhang Z, Wang D, Fan G, Otsuka K, Suzuki T, Ji Y, Zhang J, Tian Y, Hou S, Ding X D. Philos Mag, 2010; 90: 141
[1] 赵宇宏, 景舰辉, 陈利文, 徐芳泓, 侯华. 装甲防护陶瓷-金属叠层复合材料界面研究进展[J]. 金属学报, 2021, 57(9): 1107-1125.
[2] 魏铖, 柯常波, 马海涛, 张新平. 基于序参量梯度的改进相场模型及对大尺度体系马氏体相变的模拟研究[J]. 金属学报, 2018, 54(8): 1204-1214.
[3] 王锦程, 郭春文, 李俊杰, 王志军. 定向凝固晶粒竞争生长的研究进展[J]. 金属学报, 2018, 54(5): 657-668.
[4] 张军,陈文雄,郑成武,李殿中. Fe-C-Mn三元合金中奥氏体-铁素体相变的相场模拟[J]. 金属学报, 2017, 53(6): 760-768.
[5] 张军,郑成武,李殿中. 相场法模拟Fe-C合金中奥氏体-铁素体等温相变过程*[J]. 金属学报, 2016, 52(11): 1449-1458.
[6] 武慧东,张弛,柳文波,杨志刚. 考虑位错相互作用的混合控制模型下先共析铁素体生长动力学模拟[J]. 金属学报, 2015, 51(9): 1136-1144.
[7] 马文婧,柯常波,周敏波,梁水保,张新平. Sn/Cu互连体系界面和金属间化合物层Kirkendall空洞演化和生长动力学的晶体相场法模拟*[J]. 金属学报, 2015, 51(7): 873-882.
[8] 柯常波, 周敏波, 张新平. Sn/Cu互连体系界面金属间化合物Cu6Sn5演化和生长动力学的相场法模拟*[J]. 金属学报, 2014, 50(3): 294-304.
[9] 韩国民,韩志强,Alan A. Luo,Anil K. Sachdev,柳百成. Mg-Al合金Mg17Al12连续析出相形貌的相场模拟[J]. 金属学报, 2013, 49(3): 277-283.
[10] 周敏波,马骁,张新平. BGA结构Sn-3.0Ag-0.5Cu/Cu焊点低温回流时界面反应和IMC生长行为[J]. 金属学报, 2013, 49(3): 341-350.
[11] 柯常波,曹姗姗,马骁,黄平,张新平. NiTi形状记忆合金中Ni4Ti3共格沉淀相自催化生长效应的相场模拟[J]. 金属学报, 2013, 49(1): 115-122.
[12] 周广钊,王永欣,陈铮. 相场法模拟弹性应变能对Ti-Al-Nb合金 α2→ O相变粗化动力学的影响[J]. 金属学报, 2012, 48(4): 485-491.
[13] 柯常波 马骁 张新平. 外应力对NiTi合金中共格Ni4Ti3沉淀相长大行为影响的相场法模拟[J]. 金属学报, 2010, 46(8): 921-929.
[14] 刘志远 杨志刚 李昭东 刘振清 张 弛. 界面反应--扩散混合控制模型下先共析铁素体生长动力学的模拟[J]. 金属学报, 2010, 46(4): 390-395.
[15] 柯常波 马骁 张新平. NiTi形状记忆合金中共格Ni4Ti3沉淀相生长动力学行为的相场法模拟[J]. 金属学报, 2010, 46(1): 84-90.