Please wait a minute...
金属学报  2011, Vol. 47 Issue (3): 298-304    DOI: 10.3724/SP.J.1037.2010.00413
  论文 本期目录 | 过刊浏览 |
热压烧结温度对SiC颗粒增强铝基复合材料微观组织及力学性能的影响
金鹏,肖伯律,王全兆,马宗义,刘越,李曙
中国科学院金属研究所沈阳材料科学国家(联合)实验室, 沈阳 110016
EFFECT OF HOT PRESSING TEMPERATURE ON MICROSTRUCTURE AND MECHANICAL PROPERTIES OF SiC PARTICLE REINFORCED ALUMINUM
MATRIX COMPOSITES
JIN Peng, XIAO Bol¨u, WANG Quanzhao, MA Zongyi, LIU Yue, LI Shu
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
引用本文:

金鹏 肖伯律 王全兆 马宗义 刘越 李曙. 热压烧结温度对SiC颗粒增强铝基复合材料微观组织及力学性能的影响[J]. 金属学报, 2011, 47(3): 298-304.
, , , , , . EFFECT OF HOT PRESSING TEMPERATURE ON MICROSTRUCTURE AND MECHANICAL PROPERTIES OF SiC PARTICLE REINFORCED ALUMINUM
MATRIX COMPOSITES[J]. Acta Metall Sin, 2011, 47(3): 298-304.

全文: PDF(3027 KB)  
摘要: 本文在540-640 ℃温度范围内, 研究了真空热压温度对15%(体积分数)SiCp/2009Al复合材料的微观组织和力学性能的影响. 复合材料的致密度随热压温度升高而增加, 在580 ℃达到最大值, 高于580 ℃时下降.  TEM界面观察发现:热压温度为540和560 ℃时复合材料界面结合较弱, 界面出现开裂现象;当热压温 度为580和600 ℃时界面清洁、结合较好; 当温度高于620 ℃时,复合材料界面有MgAl2O4和Al4C3形成.复合材料的强度和塑性均在580 ℃取得最佳值. 拉伸断口观察发现:热压温度低于560 ℃时, 复合材料的断裂以界面脱黏为主;热压温度在580-600 ℃之间时, 复合材料以基体的韧性断裂和颗粒的断裂为主; 热压温度高于620 ℃时, 复合材料界面处MgAl2O4和Al4C3脆性相的形成使界面开裂, 复合材料的断裂为基体韧性断裂、界面开裂以及SiC颗粒断裂.
关键词 铝基复合材料 真空热压 界面 力学性能    
Abstract:The effects of hot pressing temperature on microstructures and tensile properties of 15% (volume fraction) SiCp/2009Al composites were investigated in this paper. The relative density of the composites increased rapidly with increasing the hot pressing temperature up to 580 ℃ and decreased with further increasing the temperatures. TEM observations revealed that the interface bonding was quite weak with the interface crack when the hot pressing temperature was below 560 ℃. When the composites were hot pressed at 580 and 600 ℃, the interface was clean and had a good interface bonding. The MgAl2O4 and Al4C3 formed at the interfaces when the hot pressing temperature was above 620 ℃. Tensile tests indicated that the composite fabricated at 580 ℃ exhibited the optimum strengtand ductility. Fractography revealed that for the composite fabricated at the hot pessing temperture below 560 ℃, the fracture mechanism was mainly the interfacial debonding. For the compositfabrcated at 580 and 600 ℃, the fracture mechanism of the composite was the matrix ductile fracture and the SiC particle fracture, When the hot pressing temperature was above 620 ℃, the interface fractured along MgAl2O4 and Al4C3, and the fracture mechanism of the composite was the matrix ductile fracture, the interface crack and the particle fracture.
Key wordsaluminum matrix composite    vacuum hot pressing    interface    mechanical property
收稿日期: 2010-08-17     
ZTFLH: 

TF124

 
作者简介: 金鹏, 男, 1980年生, 博士生
[1] Ouyang Q B, Li R X, Wang W L, Zhang G D, Zhang D. Mater Sci Forum, 2007; 546–549: 1551

[2] Chawla N. Adv Mater Process, 2006; 164(7): 29

[3] Rawal S. J Met, 2001; 53(4): 14

[4] Chawla N, Chawla K K. J Met, 2006; 58(11): 67

[5] Evans R D, Boyd J D. Scr Mater, 2003; 49: 59

[6] Zhou J, Dru˙zd˙zel A T, Duszczyk J. J Mater Sci, 1999; 34: 5089

[7] Gupta A K. Bull Mater Sci, 1995; 18: 773

[8] Geng L, Qu S J, Lei T Q. Key Eng Mater, 2003; 249: 233

[9] Savitskii A P, Romanov G N, Marisunova L S. Russ Phys J, 1968; 11(8): 5

[10] Savitskii A P, Romanov G N. Powder Metall Met Ceram, 1986; 25: 184

[11] Min K H, Kang S P, Lee B H, Lee J K, Kim Y D. J Alloys Compd, 2006; 419: 290

[12] Rahimian M, Ehsani N, Parvin N, Baharvandi H R. J Mater Process Technol, 2009; 209: 5387

[13] Hong S H, Chung K H. Mater Sci Eng, 1995; A194: 165

[14] Song M, He Y H. Mater Des, 2010; 31: 985

[15] Min K H, Kang S P, Kim D G, Kim Y D. J Alloys Compd, 2005; 400: 150

[16] Fogagnolo J B, Robert M H, Torralba J M. Mater Sci Eng, 2006; A426: 85

[17] Shin K S, Chung D S, Lee S H. Metall Mater Trans, 1997; 28A: 2625

[18] Laurent V, Chatain D, Eustathopoulos N. Mater Sci Eng, 1991; A135: 894

[19] Gu M Y, Mei Z, Jin Y P, Wu Z A. Scr Mater, 1999; 40: 985

[20] Shi Z L, Ochiai S, Hojo M, Lee J C, Gu M Y, Lee H, Wu R J. J Mater Sci, 2001; 36: 2441

[21] Luo Z P, Song Y G, Zhang S Q. Scr Mater, 2001; 45: 1183

[22] Wang N, Wang Z R, Weatherly G C. Metall Trans, 1992; 23A: 1423

[23] RatnaParkhi P L, Howe J M. Metall Mater Trans, 1994; 25A: 617

[24] Zhong W M, Esperance G L, Suery M. Metall Mater Trans, 1995; 26A: 2637

[25] Gonzalez G, Salvo L, Suery M, L’Esp´erance G. Scr Metall Mater, 1995; 33: 1969

[26] Wang N, Wang Z, Weatherly G C. Metall Trans, 1979; 23A: 1423

[27] Kim Y M, Lee J C. Mater Sci Eng, 2006; A420: 8

[28] Carotenuto G, Gallo A, Nicolais L. J Mater Sci, 1994; 29: 4967

[29] Lloyd D J, Lagaoe H, McLeod A, Morris P L. Mater Sci Eng, 1989; A107: 73

[30] Sahin Y. Mater Des, 2006; 24: 671

[31] Carim A H. Mater Lett, 1991; 12: 153

[32] Man C F, Mummery P M, Derby B, Jenkins M L. In: Frank J ed., Proc 2nd Int Conf Interfacial Phenomena in Composite Materials, Leuven: Butterworth–Heinemann,

1991: 175

[33] Thebaud F, Herve E, Silva R D, Suery M, Bretheau T. In: Frank J ed., Proc 2nd Int Conf Interfacial Phenomena in Composite Materials, Leuven: Butterworth–Heinemann,

1991: 179
[1] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[3] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[4] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[5] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[6] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[7] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[8] 王宗谱, 王卫国, Rohrer Gregory S, 陈松, 洪丽华, 林燕, 冯小铮, 任帅, 周邦新. 不同温度轧制Al-Zn-Mg-Cu合金再结晶后的{111}/{111}近奇异晶界[J]. 金属学报, 2023, 59(7): 947-960.
[9] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[10] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[11] 王福容, 张永梅, 柏国宁, 郭庆伟, 赵宇宏. Al掺杂Mg/Mg2Sn合金界面的第一性原理计算[J]. 金属学报, 2023, 59(6): 812-820.
[12] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[13] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[14] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[15] 吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.