Please wait a minute...
金属学报  2011, Vol. 47 Issue (3): 380-384    DOI: 10.3724/SP.J.1037.2010.00409
  论文 本期目录 | 过刊浏览 |
包晶反应产物侧向生长速度的研究
常国威,金光灿,陈淑英,李青春,岳旭东
辽宁工业大学材料科学与工程学院 ,锦州 121001
STUDY ON LATERAL GROWTH RATE OF PERITECTIC REACTION PRODUCTS
CHANG Guowei, JIN Guangcan, CHEN Shuying, LI Qingchun, YUE Xudong
School of Materials Science and Engineering, Liaoning University of Technology, Jinzhou 121001
引用本文:

常国威 金光灿 陈淑英 李青春 岳旭东. 包晶反应产物侧向生长速度的研究[J]. 金属学报, 2011, 47(3): 380-384.
, , , , . STUDY ON LATERAL GROWTH RATE OF PERITECTIC REACTION PRODUCTS[J]. Acta Metall Sin, 2011, 47(3): 380-384.

全文: PDF(805 KB)  
摘要: 针对Fe-C合金包晶反应过程中, γ相沿L/δ界面侧向生长速度的实测值远远大于Bosze和Trivedi[2]模型的计算值的问题, 分析了包晶反应过程中固/液界面前沿溶质浓度分布状况, 得到了金属熔体中圆柱形固相生长时固/液界面前沿溶质浓度分布表达式. 以Jackson[9]$提出的熔体中粗糙界面生长速度公式为基础, 确定了适合计算合金包晶反应产物侧向生长速度的公式, 并将其应用于Fe-C和Fe-Ni合金的包晶反应过程, 计算结果表明, Fe-C和Fe-Ni合金的包晶反应产物γ相的侧向生长速度计算值与Shibata等[4]和Mcdonald等[5]在激光共聚焦扫描显微镜下观察Fe-C和Fe-Ni合金包晶反应时所测得的γ相沿L/δ界面侧向生长速度的实验值基本吻合
关键词 包晶反应 凝固过程 晶体生长 生长速度    
Abstract:Aiming at the problem which the experimental results of lateral growth rates of austenite (γ–phase) in the peritectic reaction of Fe–C alloy is much larger than the calculation based on Bosze and Trivedi[2] models, solute distribution in front of the solid/liquid interface in the peritectic reaction was analyzed in detail in this article, and the expression of solute distribution while the cylindrical solid phase gew in melt was also put forward. On the basis of the growth rate formula for the coarse interface deduced by Jackson[9], the advisable epression was obtained for calculating ateral growth rate of the peritectic reaction products, and which was applied to the peritectic reaction progress of Fe–C nd Fe–Ni alloys, respectively. The results showed that the calculation lateral growth rates of the peritectic reaction products (γ–phase) were coincide with the experimental results made by Shibata et al[4] and Mcdonald et al[5] through the observation of the peritectic reaction of Fe–C and Fe–Ni alloys using a confocl scanning laser microscope (CSLM).
Key wordsperitectic rection    solidification process    crystal growth    growth rate
收稿日期: 2010-08-16     
ZTFLH: 

TG111.5

 
基金资助:

国家自然科学基金资助项目50874060

作者简介: 常国威, 男, 1960年生, 教授
[1] Trivedi R. Acta Metall, 1970; 18: 287

[2] Bosze W P, Trivedi R. Metall Mater Trans, 1974; 5B: 511

[3] Fredriksson H, Nyl´en T. Met Sci, 1982; 16: 283

[4] Shibata H, Arai Y, Suzuki M, Emi T. Metall Mater Trans, 2000; 31B: 981

[5] Mcdonald N J, Sridhar S. Metall Mater Trans, 2003; 34A: 1931

[6] Arai Y, Emi T, Fredriksson H, Shibata H. Metall Mater Trans, 2005; 36A: 3065

[7] Kerr H W, Cisse J, Bolling G F. Acta Metall, 1974; 22: 677

[8] Hillert M. Solidification and Casting of Metals. London: The Metals Society, 1979: 81

[9] Jackson K A. Liquid Melts and Solidification. Cleveland: American Society Melts, 1958: 174

[10] Jackson K A. J Cryst Growth, 1968; 3–4: 507

[11] Mullins W W, Sekerka R F. J Appl Phys, 1964; 35: 444

[12] Langr J S, Muller–Krumbahaar H. Acta Metall, 1978; 26: 1681

[13] Trivedi R, Somboonsuk K. Acta Metall, 1985; 33: 1061

[14] Trivedi R, Kurz W. Acta Metall Mater, 1994; 42: 15

[15] Burton J A, Prim R C, Slichter W P. J Chem Phys, 1953; 21: 1987

[16] Coriell S R, Paker R L. J Appl Phys, 1965; 36: 632

[17] Jackson K A, Gilmer G H, Temkin D E, Weinberg J D, Beatty K M. J Cryst Growth, 1993; 128: 127

[18] Jackson K A, Gilmer G H, Temkin D E. Phys Rev Lett, 1995; 75: 2530

[19] Jackson K A, Gilmer G H, Temkin D E, Weinberg J D, Beatty K M. J Cryst Growth, 1996; 163: 461

[20] Beatty K M, Jackson K A. J Cryst Growth, 1997; 174: 28

[21] Jackson K A. J Cryst Growth, 1999; 198/199: 1

[22] Bentz D N, Betush W J, Jackson K A. J Cryst Growth, 2003; 250: 162

[23] Bentz D N, Betush W J, Jackson K A. J Cryst Growth, 2003; 250: 166

[24] Poirier D R, Geiger G H. Transport Phenomena in Materials Processing. Warrendale, PA: TMS, 1994: 450

[25] Kurz W, Fisher D J. Fundamentals of Solidification. Switzerland: Trans Tech Publications Ltd., 1998: 240

[26] Vandyoussefi M, Kerr H W, Kurz W. Acta Mtaer, 1997; 45: 4093

[27] Phelan D, Reid M, Dippenaar R. Metall Mater Trans, 2006; 37A: 985
[1] 王桂芹,王琴,车宏龙,李亚军,雷明凯. Si对铸造超高铬高碳双相钢组织及性能的影响[J]. 金属学报, 2020, 56(3): 278-290.
[2] 李亚强, 刘建华, 邓振强, 仇圣桃, 张佩, 郑桂芸. 15CrMoG钢包晶凝固特征与机制[J]. 金属学报, 2020, 56(10): 1335-1342.
[3] 刘巧沐,黄顺洲,刘芳,杨艳,南宏强,张东,孙文儒. B含量对K417G合金凝固过程中组织演变和力学性能的影响[J]. 金属学报, 2019, 55(6): 720-728.
[4] 王强 马明臻 张新宇 刘日平 . Zr50Cu50合金过冷熔体中的晶体生长速度[J]. 金属学报, 2008, 44(12): 1415-1418.
[5] 马天宇 ; 严密; 王庆伟 . <110>取向Tb--Dy--Fe--Co 合金棒的磁致伸缩均匀性[J]. 金属学报, 2007, 43(7): 688-692 .
[6] 张国栋; 刘俊成; 李蛟 . 坩埚内壁碳膜对Bridgman法生长CdZnTe晶体热应力的影响[J]. 金属学报, 2007, 43(10): 1071-1076 .
[7] 李涛; 陈光; 林鑫; 黄卫东 . 搅拌条件下二元合金凝固组织的形态演化[J]. 金属学报, 2006, 42(6): 577-583 .
[8] 蒋成保; 刘敬华; 张涛; 徐惠彬 . 定向凝固铁磁形状记忆合金Ni2MnGa的固-液界面形态[J]. 金属学报, 2004, 40(9): 975-980 .
[9] 王强; 赫冀成; 川合悟; 岩井一彦 ; 浅井滋生 . 磁声波对金属凝固组织的影响[J]. 金属学报, 2002, 38(9): 961-965 .
[10] 张虎; 高文理; 张二林; 曾松岩 . Ti-54Al-xB合金中TiB2的形貌演变及生长机理[J]. 金属学报, 2002, 38(7): 699-702 .
[11] 傅恒志; 苏彦庆; 郭景杰; 徐达鸣 . 高温金属间化合物的定向凝固特性[J]. 金属学报, 2002, 38(11): 1127-1132 .
[12] 金云学; 张虎; 曾松岩; 张二林; 李庆芬 . 自生TiCp/Ti复合材料中TiC的生长习性[J]. 金属学报, 2002, 38(11): 1223-1227 .
[13] 张云鹏; 苏俊义; 陈铮; 林广伟 . 铸铁水平连铸中圆坯凝固过程的数值模拟[J]. 金属学报, 2001, 37(3): 287-290 .
[14] 马颖; 郝远; 阎峰云; 刘洪军 . Zn-Al合金热型连铸定向凝固的晶体生长机理[J]. 金属学报, 2001, 37(2): 202-206 .
[15] 张云鹏; 苏俊义 . 凝固过程微观数值模拟中的碰撞因子[J]. 金属学报, 2000, 36(9): 990-992 .