Please wait a minute...
金属学报  2011, Vol. 47 Issue (3): 333-336    DOI: 10.3724/SP.J.1037.2010.00406
  论文 本期目录 | 过刊浏览 |
非晶态及部分晶化态Al-Ni-Y合金的磁性
龚静1,杨红旺1,杨柏俊2,王瑞春1,李荣德1,王建强3
1. 沈阳工业大学材料科学与工程学院, 沈阳 110870
2. 中国科学院金属研究所沈阳材料科学国家(联合)实验室, 沈阳 110016
MAGNETISM OF MONOLITHIC AND PARTIALLY CRYSTALLIZED AMORPHOUS Al–Ni–Y ALLOYS
GONG Jing 1, YANG Hongwang 1, YANG Baijun 2, WANG Ruichun 1, LI Rongde 1,WANG Jianqiang 2
1. School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870
2. Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
引用本文:

龚静 杨红旺 杨柏俊 王瑞春 李荣德 王建强. 非晶态及部分晶化态Al-Ni-Y合金的磁性[J]. 金属学报, 2011, 47(3): 333-336.
, , , , , . MAGNETISM OF MONOLITHIC AND PARTIALLY CRYSTALLIZED AMORPHOUS Al–Ni–Y ALLOYS[J]. Acta Metall Sin, 2011, 47(3): 333-336.

全文: PDF(466 KB)  
摘要: 采用熔体急冷法制备了Al90Ni2Y8和Al84Ni8Y8合金条带,并用XRD进行了结构表征, 用差示扫描量热仪分析了合金的热稳定性, 使用超导量子干涉仪对 Al90Ni2Y8和Al84Ni8Y8非晶态及部分晶化态合金的磁性进行了研究. 结果表明, Al90Ni2Y8和Al84Ni8Y8非晶合金为抗磁性, 而且随着Ni含量的增加, 合金更容易被磁化. 当磁场强度达到0.5 T时,Al90Ni2Y8合金对应的比磁化强度为-0.083 Am2/kg, 磁化率为-1.66×10-5, 而Al84Ni8Y8合金对应的比磁化强度为-0.091 Am2/kg, 磁化率为-1.82×10-5. 当合金部分晶化后, 合金的磁性仍保持抗磁性, 但是比磁化强度的绝对值均显著增加. 当磁场强度为0.5 T时, Al90Ni2Y8合金对应的比磁化强度的绝对值从急冷态的0.083 Am2/kg增大到部分晶化后的0.231 Am2/kg,Al84Ni8Y8对应的比磁化强度的绝对值从急冷态的0.091 Am2/kg增大到部分晶化后的0.163 Am2/kg, 对应的磁化率绝对值分别变为4.62×10-5和3.26×10-5, 说明合金部分晶化后更易被磁化.这是由于部分晶化后, 铁磁性的Ni元素和可增强磁性的Y元素在纳米Al晶体周围显著富集,形成磁性较强的短程有序结构造成的.
关键词 非晶合金 纳米晶化 磁性    
Abstract:Al90Ni2Y8 and Al84Ni8Y8 alloy ribbons were produced by melt–spinning, the structural characterization of the as–quenched samples was performed by XRD, the thermal stability of the as–quenched alloys was characterized using a differential scanning calorimeter (DSC), the magnetism of both Al90Ni2Y8 and Al84Ni8Y8 alloys fully amorphous and partially crystallized were investigated using a superconducting quantum interference device (SQUID). The results show that the magnetism of thamorphous Al90Ni2Y8 and Al84Ni8Y8alloys are diamagnetism, and the alloys are magnetized more easily with higher Ni content. When the magnetic field reaches 0.5 T, the specific magnetizations of Al90Ni2Y8 and Al84Ni8Y8alloy are −0.083 and −0.091 Am2/kg, and the magnetisabilities are −1.66×10−5 and −1.2×10−5, respectively. The magnetism of alloys remains unchanged after partially crystallized, but the absolute value of specific magnetization is correspondingly increased. After partially crystallization, the absolute value of specific magnetization of the Al90Ni2Y8 alloy increases from 0.083 Am2/kg to 0.231 Am2/kg, and that of the Al84Ni8Y8 alloy increases from 0.091 Am2/kg to 0.163 Am2/kg corresponding to a magnetic field of 0.5 T, and also the absolute value of magnetisability reaches to 4.62×10−5 and 3.26×10−5, respectiely, which is attributed to the Ni and Y elemental build–up around the nanometer sized pure Al crystals after partially crystallizatin.
Key wordsamorphous alloy    nanocrystallization    magnetism
收稿日期: 2010-08-13     
基金资助:

国家自然科学基金项目50874075和沈阳市科技局项目1091177-1-00资助

作者简介: 龚静, 女, 1986年生, 硕士生
[1] Yoshizawa Y, Oguma S, Yamauchi K. J Appl Phys, 1988; 64: 6044

[2] Fujii Y, Fujita H, Seki A. J Appl Phys, 1991; 70: 6241

[3] Suzuki K, Makino A, Inoue A, Masumoto T. J Appl Phys, 1993; 74: 3316

[4] Liu T, Gao Y F, Xu Z X, Zhao Z T, Ma R Z. J Appl Phys, 1996; 80: 3972

[5] Guo S F, Wu Z Y, Liu L. J Alloy Compd, 2009; 468: 54

[6] Duhaj P, Svec P, Janickovic D, Matko I, Hlasnik M. Mater Sci Eng, 1992; B14: 357

[7] Hu Y, Liu L, Chan K C, Pan M X, Wang W H. Mater Lett, 2006; 60: 1080

[8] Inoue A, Ohtera K, Tsai A P, Masumoto T. Jpn J Appl Phys, Part 2, 1988; 27: L280

[9] He Y, Poon S J, Shiflet G J. Science, 1988; 241: 1640

[10] Kim Y H, Inoue A, Masumoto T. Mater Trans JIM, 1990; 31: 747

[11] Kim Y H, Inoue A, Masumoto T. Mater Trans JIM, 1991; 32: 331

[12] Cochrane R F, Schumacher P, Greer A L. Mater Sci Eng, 1991; 133: 367

[13] Benameur T, Inoue A. Mater Sci Froum, 1995; 179–181: 813

[14] Gogebakan M, Warren P J, Cantor B. Mater Sci Eng, 1997; A226–228: 168

[15] Foley J C, Allen D R, Perepezko J H. Scr Mater, 1996; 35: 655

[16] Inoue A, Matsumoto N, Masumoto T. Mater Trans JIM, 1990; 31: 493

[17] Guo F Q, Poon S J, Shiflet G J. Mater Sci Forum, 2000; 331–337: 31

[18] Yang B J, Yao J H, Zhang J, Yang H W, Wang J Q, Ma E. Scr Mater, 2009; 61: 423

[19] Zhuo L C, Pang S J, Wang H, Zhang T. Chin Phys Lett, 2009; 26: 066402

[20] Wan D F, Luo S H. Physics of Magnetism. Beijing: Electronic Industry Press, 1987: 232

(宛德福, 罗世华. 磁性物理. 北京: 电子工业出版社, 1987: 232)

[21] Hono K, Zhang Y, Tsai A P, Inoue A, Sakurai T. Scr Metall Mater, 1995; 32: 191
[1] 张德印, 郝旭, 贾宝瑞, 吴昊阳, 秦明礼, 曲选辉. Y2O3 含量对燃烧合成Fe-Y2O3 纳米复合粉末性能的影响[J]. 金属学报, 2023, 59(6): 757-766.
[2] 刘路军, 刘政, 刘仁辉, 刘永. Nd90Al10 晶界调控对晶界扩散磁体磁性能和微观结构的影响[J]. 金属学报, 2023, 59(11): 1457-1465.
[3] 刘帅帅, 侯超楠, 王恩刚, 贾鹏. Zr61Cu25Al12Ti2Zr52.5Cu17.9Ni14.6Al10Ti5 块体非晶合金过冷液相区的塑性流变行为[J]. 金属学报, 2022, 58(6): 807-815.
[4] 李金富, 李伟. 铝基非晶合金的结构与非晶形成能力[J]. 金属学报, 2022, 58(4): 457-472.
[5] 张金勇, 赵聪聪, 吴宜谨, 陈长玖, 陈正, 沈宝龙. (Fe0.33Co0.33Ni0.33)84 -x Cr8Mn8B x 高熵非晶合金薄带的结构特征及其晶化行为[J]. 金属学报, 2022, 58(2): 215-224.
[6] 韩录会, 柯海波, 张培, 桑革, 黄火根. 非晶态U60Fe27.5Al12.5 合金的晶化动力学行为[J]. 金属学报, 2022, 58(10): 1316-1324.
[7] 项兆龙, 张林, XIN Yan, 安佰灵, NIU Rongmei, LU Jun, MARDANI Masoud, HAN Ke, 王恩刚. Cr含量对FeCrCoSi永磁合金调幅分解组织及其性能的影响[J]. 金属学报, 2022, 58(1): 103-113.
[8] 胡祥, 葛嘉城, 刘思楠, 伏澍, 吴桢舵, 冯涛, 刘冬, 王循理, 兰司. 具有异常放热现象的Fe-Nb-B-Y非晶合金燃烧机理[J]. 金属学报, 2021, 57(4): 542-552.
[9] 刘日平, 马明臻, 张新宇. 块体非晶合金铸造成形的研究新进展[J]. 金属学报, 2021, 57(4): 515-528.
[10] 李宁, 黄信. 块体非晶合金的3D打印成形研究进展[J]. 金属学报, 2021, 57(4): 529-541.
[11] 潘杰, 段峰辉. 非晶合金的回春行为[J]. 金属学报, 2021, 57(4): 439-452.
[12] 毕甲紫, 刘晓斌, 李然, 张涛. 非晶合金粉末作为润滑油添加剂的摩擦学性能[J]. 金属学报, 2021, 57(4): 559-566.
[13] 朱敏, 欧阳柳章. 镁基储氢合金动力学调控及电化学性能[J]. 金属学报, 2021, 57(11): 1416-1428.
[14] 黄火根, 张鹏国, 张培, 王勤国. U-CoU-Fe基础体系非晶形成能力的比较[J]. 金属学报, 2020, 56(6): 849-854.
[15] 于雷,罗海文. 部分再结晶退火对无取向硅钢的磁性能与力学性能的影响[J]. 金属学报, 2020, 56(3): 291-300.