Please wait a minute...
金属学报  2010, Vol. 46 Issue (9): 1121-1127    DOI: 10.3724/SP.J.1037.2010.00207
  论文 本期目录 | 过刊浏览 |
二次挤压对SiCp/2009Al复合材料微观结构和力学性能的影响
刘振宇, 王全兆, 肖伯律, 马宗义,  刘\越
中国科学院金属研究所, 沈阳 110016
EFFECTS OF DOUBLE EXTRUSION ON THE MICROSTRUCTURE AND TENSILE PROPERTY OF THE PM PROCESSED SiCp/2009Al COMPOSITES
LIU Zhenyu, WANG Quanzhao, XIAO Bolv, MA Zongyi, LIU Yue
Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
引用本文:

刘振宇 王全兆 肖伯律 马宗义 刘\越. 二次挤压对SiCp/2009Al复合材料微观结构和力学性能的影响[J]. 金属学报, 2010, 46(9): 1121-1127.
, , , , . EFFECTS OF DOUBLE EXTRUSION ON THE MICROSTRUCTURE AND TENSILE PROPERTY OF THE PM PROCESSED SiCp/2009Al COMPOSITES[J]. Acta Metall Sin, 2010, 46(9): 1121-1127.

全文: PDF(815 KB)  
摘要: 

对粉末冶金法制备的20%SiCp/2009Al(体积分数)复合材料进行了一次挤压和二次挤压, 对2种挤压棒材微观结构的观察表明, 相对于热压复合材料, 挤压可以减少SiCp团聚; 而二次挤压可进一步细化 SiCp, 使SiCp沿挤压方向定向分布, 增大SiCp的长径比, 但对基体合金晶粒尺寸和<111>织构影响不大. 此外, 二次挤压使SiCp沿挤压方向的平均间距进一步增大, 更易于产生近似垂直于挤压方向的贫SiCp层, 导致复合材料屈服和抗拉强度下降而延伸率增加.

关键词 粉末冶金复合材料 铝合金二次挤压贫SiCp    
Abstract

Powder metallurgy (PM), as an important method of fabricating SiC particle reinforced aluminum matrix (SiCp/Al) composites, has advantages in obtaining good interfacial bonding and enhancing tensile strength over casting or infiltrating method. The primary process of the PM method involves mixing, compaction and subsequent secondary plastic deformation. Especially, secondary plastic deformation is an important process to destroy the oxidation film on the Al particle surfaces and enhance Al-SiC bonding. However, the incorporation of the SiC particles restricts plastic flow ability of the composite and makes it difficult to be subjected to heavy single-step plastic deformation, such as single hot extrusion, hot rolling or hot forging. Instead, multi-step deformation is a critical processing approach for the SiCp/Al composites with low deformability. However, the previous attentions were mostly focused on single-step processing, multi--step plastic deformation of the SiCp/Al composites was seldom discussed. In this paper, 20%SiCp/2009Al (volume fraction) composite was fabricated using a common PM method and the effects of double extrusion on the microstructure and tensile property of the composite were investigated. It is indicated that the double extrusion could refine the SiCp size, align the SiCp and increase the aspect ratio of the SiCp, but did not exert critical effects of the grain size and <111> texture of the matrix. However, the average distance between the SiCp along the extrusion direction increased after the double extrusion, more easily inducing a SiCp-poor band which aligned approximately perpendicularly to the extrusion direction. This resulted in a decrease in the strength and an increase in the elongation along the extrusion direction.

Key wordspowder metallurgy    composite    aluminum alloy    double extrusion    SiCp-poor band
收稿日期: 2010-04-30     
ZTFLH: 

TF124

 
作者简介: 刘振宇, 男, 1985年生, 硕士生

[1] Ibrahim I A, Mohamed F A, Lavernia E J. J Mater Sci, 1991; 26: 1137
[2] Torralba J M, da Costa C E, Velasco F. J Mater Proc Technol, 2003; 133: 203
[3] Ralph B, Yuen H C, Lee W B. J Mater Proc Technol, 1997; 63: 339
[4] Miracle D B. Compos Sci Technol, 2005; 65: 2526
[5] Liu Y B, Lim S C, Lu L, Lai M O. J Mater Sci, 1994; 29: 1999
[6] Cocen U, Onel K. Compos Sci Technol, 2002; 62: 275
[7] Carvalho M H, Marcelo T, Carvalhinhos H, Sellars C M. J Mater Sci, 1992; 27: 2101
[8] Sun X W, Zeng S M, Chen Z Q, Cheng N P. J Southwest China Norm Univ (Nat Sci Ed), 2005; 30: 888
(孙旭炜, 曾苏民, 陈志谦, 程南璞. 中南大学学报(自然科学版), 2005; 30: 888)
[9] Hanada K, Murakoshi Y, Negishi H, Sano T. J Mater Proc Technol, 1997; 63: 405
[10] Davies C H J, Chen W C, Hawbolt E B, Samarasekera I V, Brimacombe J K. Scr Metall Mater, 1995; 32: 309
[11] Davies C H J, Chen W C, Lloyd D, Hawbolt E B, Samarasekera I V, Brimacombe J K. Metal Mater Trans, 1996; 27A: 4113
[12] Rahmani F R, Akhlaghi F. J Mater Proc Technol, 2007; 187–188: 433
[13] Yang N, Boselli J, Gregson P, Sinclair I. Mater Sci Technol, 2000; 16: 797
[14] Yang N, Boselli J, Sinclair I. J Microscopy, 2001; 201: 189
[15] Boselli J, Gregson P J, Sinclair I. Mater Sci Eng, 2004; A379: 72
[16] Tham L M, Gupta M, Cheng L. Mater Sci Eng, 2002; A326: 355
[17] Humphreys J F, Hatherly M. Recrystallization and Related Annealing Phenomena. 2nd Ed., UK: Elsevier Ltd, 2004: 427
[18] Mitra R, Mahajan Y. Bull Mater Sci, 1995; 18: 405
[19] Flom Y, Arsenault R J. Acta Metall, 1989; 37: 2413
[20] Milan M, Bowen P. J Mater Eng Perform, 2004; 13: 775
[21] Nardone V C, Prewo K M. Scr Metall, 1986; 20: 43
[22] Liu Z Y, Wang Q Z, Xiao B L, Ma Z Y, Liu Y. Mater Sci Eng, 2010, doi:10.1016/j.msea.2010.05.006

[1] 王宗谱, 王卫国, Rohrer Gregory S, 陈松, 洪丽华, 林燕, 冯小铮, 任帅, 周邦新. 不同温度轧制Al-Zn-Mg-Cu合金再结晶后的{111}/{111}近奇异晶界[J]. 金属学报, 2023, 59(7): 947-960.
[2] 徐磊, 田晓生, 吴杰, 卢正冠, 杨锐. 热等静压成形Inconel 718粉末合金的显微组织和力学性能[J]. 金属学报, 2023, 59(5): 693-702.
[3] 马宗义, 肖伯律, 张峻凡, 朱士泽, 王东. 航天装备牵引下的铝基复合材料研究进展与展望[J]. 金属学报, 2023, 59(4): 457-466.
[4] 朱云鹏, 覃嘉宇, 王金辉, 马鸿斌, 金培鹏, 李培杰. 机械球磨结合粉末冶金制备AZ61超细晶镁合金的组织与性能[J]. 金属学报, 2023, 59(2): 257-266.
[5] 夏大海, 计元元, 毛英畅, 邓成满, 祝钰, 胡文彬. 2024铝合金在模拟动态海水/大气界面环境中的局部腐蚀机制[J]. 金属学报, 2023, 59(2): 297-308.
[6] 马国楠, 朱士泽, 王东, 肖伯律, 马宗义. SiC颗粒增强Al-Zn-Mg-Cu复合材料的时效行为和力学性能[J]. 金属学报, 2023, 59(12): 1655-1664.
[7] 姜江, 郝世杰, 姜大强, 郭方敏, 任洋, 崔立山. NiTi-Nb原位复合材料的准线性超弹性变形[J]. 金属学报, 2023, 59(11): 1419-1427.
[8] 高建宝, 李志诚, 刘佳, 张金良, 宋波, 张利军. 计算辅助高性能增材制造铝合金开发的研究现状与展望[J]. 金属学报, 2023, 59(1): 87-105.
[9] 沈莹莹, 张国兴, 贾清, 王玉敏, 崔玉友, 杨锐. SiCf/TiAl复合材料界面反应及热稳定性[J]. 金属学报, 2022, 58(9): 1150-1158.
[10] 马志民, 邓运来, 刘佳, 刘胜胆, 刘洪雷. 淬火速率对7136铝合金应力腐蚀开裂敏感性的影响[J]. 金属学报, 2022, 58(9): 1118-1128.
[11] 宋文硕, 宋竹满, 罗雪梅, 张广平, 张滨. 粗糙表面高强铝合金导线疲劳寿命预测[J]. 金属学报, 2022, 58(8): 1035-1043.
[12] 王春辉, 杨光昱, 阿热达克·阿力玛斯, 李晓刚, 介万奇. 砂型3DP打印参数对ZL205A合金铸造性能的影响[J]. 金属学报, 2022, 58(7): 921-931.
[13] 谷瑞成, 张健, 张明阳, 刘艳艳, 王绍钢, 焦大, 刘增乾, 张哲峰. 三维互穿结构SiC晶须骨架增强镁基复合材料制备及其力学性能[J]. 金属学报, 2022, 58(7): 857-867.
[14] 田妮, 石旭, 刘威, 刘春城, 赵刚, 左良. 预拉伸变形对欠时效7N01铝合金板材疲劳断裂的影响[J]. 金属学报, 2022, 58(6): 760-770.
[15] 高川, 邓运来, 王冯权, 郭晓斌. 蠕变时效对欠时效7075铝合金力学性能的影响[J]. 金属学报, 2022, 58(6): 746-759.