Please wait a minute...
金属学报  2010, Vol. 46 Issue (9): 1047-1054    DOI: 10.3724/SP.J.1037.2010.00046
  论文 本期目录 | 过刊浏览 |
不同气氛激光立体成形镍基高温合金Inconel 718的显微组织和力学性能
刘奋成, 林鑫, 杨高林, 黄春平, 陈静, 黄卫东
西北工业大学凝固技术国家重点实验室, 西安 710072
MICROSTRUCTURES AND MECHANICAL PROPERTIES OF LASER SOLID FORMED NICKLE BASE SUPERALLOY INCONEL 718 PREPARED IN DIFFERENT ATMOSPHERES
LIU Fencheng, LIN Xin, YANG Gaolin, HUANG Chunping, CHEN Jing, HUANG Weidong
State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072
引用本文:

刘奋成 林鑫 杨高林 黄春平 陈静 黄卫东. 不同气氛激光立体成形镍基高温合金Inconel 718的显微组织和力学性能[J]. 金属学报, 2010, 46(9): 1047-1054.
, , , , , . MICROSTRUCTURES AND MECHANICAL PROPERTIES OF LASER SOLID FORMED NICKLE BASE SUPERALLOY INCONEL 718 PREPARED IN DIFFERENT ATMOSPHERES[J]. Acta Metall Sin, 2010, 46(9): 1047-1054.

全文: PDF(781 KB)  
摘要: 

在Ar气和空气环境中激光立体成形了Inconel 718镍基高温合金坯. 显微组织观察、拉伸性能和高周疲劳性能测试结果表明: Ar气和空气环境中成形合金的沉积态和热处理态组织基本相同, 沉积态组织为沿沉积方向连续生长的粗大柱状枝晶, 组织细密、均匀; 热处理后发生再结晶, 柱状晶转变为等轴晶; 2种气氛下成形件热处理后的静载拉伸性能满足锻件标准, 空气环境中成形试样的拉伸强度略高于Ar气环境中成形的试样, 但是前者的塑性略低; 前者的疲劳性能比后者约低30%, 这主要是由于空气中成形的试样中存在较多的氧化物夹杂和显微气孔等缺陷; 二者的疲劳性能均低于锻件标准, 主要原因是试样中存在氧化物夹杂、显微气孔等冶金缺陷以及热处理后的晶粒尺寸较大.

关键词 镍基高温合金激光立体成形气氛 显微组织力学性能    
Abstract

Due to the rapid melting and solidification in laser molten pool, the laser solid forming (LSF) samples have generally much finer microstructure than that of the conventional cast, and are also free of macrosegregation. To date, more and more researchers have reported the application of LSF technology in the forming of superalloy, which contains some easily segregated elements such as Nb, Ti and Al. To prevent the molten pool from oxidation, the LSF process usually should be performed within a protective atmosphere. But in practice, the forming of oxidation-resistant metals are always performed in the air atmosphere and only the molten pool is protected by noble gas. Therefore, it is important to investigate the microstructures and properties of LSF materials prepared in the air and noble gas. In the present study, the microstructures, tensile properties and high cycle fatigue properties of LSF Inconel 718 alloy samples prepared in the air and argon atmospheres were investigated. It is indicated that the microstructures in as-deposited and heat-treated LSF Inconel 718 alloy samples prepared in both atmospheres are similar. The as-deposited microstructure consists of columnar dendrites grew epitaxially along the deposition direction from the substrate, and changes to the equiaxed grains after solution heat treatment due to the recrystallization. The tensile properties of the two kinds of the samples after heat treatment reached the standard for wrought Inconel 718 alloy. The tensile strength of the sample prepared in air is slightly higher than that of the sample prepared in the argon atmosphere, and the high cycle fatigue lifetime of the latter is 30% higher than that of the former, which is related to the fewer defects such as micro pores and small size oxide inclusions existed in the former. The lower high cycle fatigue property of LSF Inconel 718 alloy than that of wrought Inconel 718 alloy is attributed to the metallurgical defects and the coarsening and uneven distribution of the recrystallized grains.

Key wordsNi base superalloy    laser solid forming (LSF)    atmosphere    microstructure    mechanical property
收稿日期: 2010-01-26     
基金资助:

新世纪优秀人才支持计划项目NCET-06-0879, 国家自然科学基金项目50971102, 高等学校学科创新引智计划项目08040, 西北工业大学基础研究基金NPUFFR-JC200808及西北工业大学凝固技术国家重点实验室自主研究课题项目16-TZ-2007和39-QZ-2009资助

作者简介: 刘奋成, 男, 1981年生, 博士生
[1] Huang W D. Laser Solid Forming. Xi’an: Northwestern Polytechnical University Press, 2007: 10 (黄卫东. 激光立体成形. 西安: 西北工业大学出版社, 2007: 10) [2] Gaumann M, Henry S, Cleton F, Wagniere J D, Kurz W. Mat Sci Eng A, 1999; 271: 232 [3] Blackwell P L. J Mater Process Tech, 2005; 170: 240 [4] Zhao X M, Lin X, Chen J, Xue L, Huang W D. Mat Sci Eng A, 2009; 504: 129 [5] Sun H Q, Zhong M L, Liu W J, He J J, Li X L. In: Deng S S, Matsunawa A, Yao Y L, Zhong M L, eds., Proceeding of Lasers in Material Processing and Manufacturing II, Bellingham WA: SPIE-The International Society for Optical Engineering, 2005: 84 [6] Zhong M L, Yang L, Liu W J, Huang T, He J J. In: Deng S S, Matsunawa A, Yao Y L, Zhong M L, eds., Proceeding of Lasers in Material Processing and Manufacturing II, Bellingham WA: SPIE-The International Society for Optical Engineering, 2005: 59 [7] Zhang F Y, Chen J, Tan H, Lin X, Huang W D. Opt Laser Technol, 2009;41:601 [8] Zhao X M, Chen J, Lin X, Huang W D. Mat Sci Eng A, 2008; 478:119 [9] Lin X, Yang H O, Chen J, Huang W D. Acta Metall Sin, 2006; 42: 361 (林鑫, 杨海鸥, 陈静, 黄卫东. 金属学报,2006; 42: 361) [10] Azadian S, Wei L Y, Warren R. Mater Charact, 2004; 53: 7 [11] Sundararaman M, Mukhopadhyay P, Banerjee S. Metall Trans A, 1988; 19A: 453 [12] Hong S J, Chen W P, Wang T W. Metall Mater Trans A, 2001; 32A: 1887 [13] Slama C, Abdellaoui M. J Alloy Compd, 2000; 306: 277 [14] Editor committee of Chinese Aerospace Material Manual. Chinese Aerospace Material Manual: Deforming Superalloy and Casting Superalloy. 2nd ed. Beijing: Standards Press of China, 2001: 323 (《中国航空材料手册》编辑委员会编. 中国航空材料手册: 变形高温合金、铸造高温合金. 第2版. 北京: 中国标准出版社, 2001: 323) [15] Zhuang J Y, Du J H, Deng Q, Qv J L, Lv X D. Wrought Superalloy GH4169. Beijing: Metallurical Industry Press,2006: 59 (庄景云, 杜金辉,邓群,曲敬龙,吕旭东.变形高温合金GH4169. 北京: 冶金工业出版社, 2006: 59) [16] Murakami Y. Metal Fatigue. Oxford: Elsevier; 2002: 75 [17] Kobayashi K, Yamaguchi K, Hayakawa M, Kimura M. Acta Metall Sin (English lett), 2004; 17: 345 [18] Wang C Z. Materials Properties. Beijing: Beijing University of Technology Press, 2001: 90 (王曾增.材料性能学. 北京: 北京工业大学出版社,2001:90) [19] Rostoker W, Dvorak J R, translated by Liu Y K, Wei F M, Zhou L, Xv Z R. Interpretation of Metallographio Structures. 2nd ed. Shanghai: Shanghai scientific and Technical Publishers, 1984:46 (Rostoker W, Dvorak J R著,刘以宽,魏馥铭,周莲,徐佐仁译. 金相组织解说. 第2版. 上海:上海科学技术出版社, 1984: 46) [20] Merrick H F. Metall Trans. 1974; 5: 891
[1] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[2] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[3] 王磊, 刘梦雅, 刘杨, 宋秀, 孟凡强. 镍基高温合金表面冲击强化机制及应用研究进展[J]. 金属学报, 2023, 59(9): 1173-1189.
[4] 江河, 佴启亮, 徐超, 赵晓, 姚志浩, 董建新. 镍基高温合金疲劳裂纹急速扩展敏感温度及成因[J]. 金属学报, 2023, 59(9): 1190-1200.
[5] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[6] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[7] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[8] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[9] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[10] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[11] 穆亚航, 张雪, 陈梓名, 孙晓峰, 梁静静, 李金国, 周亦胄. 基于热力学计算与机器学习的增材制造镍基高温合金裂纹敏感性预测模型[J]. 金属学报, 2023, 59(8): 1075-1086.
[12] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[13] 张禄, 余志伟, 张磊成, 江荣, 宋迎东. GH4169高温合金热机械疲劳循环损伤机理及数值模拟[J]. 金属学报, 2023, 59(7): 871-883.
[14] 孙蓉蓉, 姚美意, 王皓瑜, 张文怀, 胡丽娟, 仇云龙, 林晓冬, 谢耀平, 杨健, 董建新, 成国光. Fe22Cr5Al3Mo-xY合金在模拟LOCA下的高温蒸汽氧化行为[J]. 金属学报, 2023, 59(7): 915-925.
[15] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.