Please wait a minute...
金属学报  2010, Vol. 46 Issue (8): 984-990    DOI: 10.3724/SP.J.1037.2010.00021
  论文 本期目录 | 过刊浏览 |
等离子弧定点焊熔池穿孔过程的数值分析
王小杰, 武传松, 陈茂爱
山东大学材料液固结构演变与加工教育部重点实验室, 济南 250061
NUMERICAL SIMULATION OF WELD POOL KEYHOLING PROCESS IN STATIONARY PLASMA ARC WELDING
WANG Xiaojie, WU Chuansong, CHEN Maoai
Key Lab for Solid–Liquid Structure Evolution and Materials Processing (Ministry of Education), Shandong University, Jinan 250061
引用本文:

王小杰 武传松 陈茂爱. 等离子弧定点焊熔池穿孔过程的数值分析[J]. 金属学报, 2010, 46(8): 984-990.
. NUMERICAL SIMULATION OF WELD POOL KEYHOLING PROCESS IN STATIONARY PLASMA ARC WELDING[J]. Acta Metall Sin, 2010, 46(8): 984-990.

全文: PDF(1641 KB)  
摘要: 

利用Level-Set理论与方法追踪小孔界面的演变过程, 建立了等离子弧定点焊熔池与小孔的数学模型, 对不锈钢试件等离子弧定点焊熔池的穿孔过程进行数值模拟,获得了多种工艺条件下熔池与小孔形状和尺寸的动态变化数据. 结果表明,6 mm厚度不锈钢试件等离子弧定点焊, 当焊接电流为170和180 A时, 分别在2.7和2.5 s形成贯穿工件厚度的小孔; 等离子弧定点焊过程中, 小孔断面的形状由开始的U字型转为V字型, 穿透工件后又呈现类似双曲线型. 通过测量熔池穿孔时刻的等离子弧尾焰电压信号, 对数值分析结果进行了实验验证.

关键词 等离子弧定点焊 小孔 熔池 数值分析    
Abstract

The behaviors of keyhole formation determine to a great degree the deep penetration welding process and the weld depth–width ratio in welding of medium and large thickness plates. Obtaining a deep insight into the dynamic keyholing process in the weld pool in plasma arc welding is of great significance for widening the process parameter–widow and improving the process robustness as well as weld quality stability. Based on the Level–Set theory, a numerical model is developed to describe the keyhole behaviors in the weld pool in stationary plasma arc welding (PAW), and employed to track the evolution process of keyhole boundary. In this paper, the fluid flow fields in both the plasma and the keyhole regions are constructed according to the experimental and simulation data in the previous literatures. The combined volumetric heat source model is used to numerically analyze the transient temperature field and then to determine the weld pool geometry. The algorithm of Level–Set theory combined with the transient thermal conduction model is used to determine the evolution of both keyhole and weld pool geometry at different time steps. The dynamic information on the weld pool and keyhole geometry and sizes under a few process conditions is obtained by the numerical simulation of keyholing phenomena in welding of stainless steel plates. It is found that a complete keyhole is established at 2.7 and 2.5 s for the current levels of 170 and 180 A, respectively. During the stationary PAW process, the cross–section geometry of keyhole transforms from U–shape at initial stage to V– shape later and shows finally a hyperbola shape after a complete keyhole is formed. The numerical analysis of keyhole formation is verified by measuring the efflux plasma voltage signals at the moet of keyholing.

Key wordsStationary plasma arc welding    keyhole    weld pool    numerical simulation
收稿日期: 2010-01-11     
基金资助:

国家自然科学基金重点资助项目50936003

作者简介: 王小杰, 男, 1983年生, 硕士生

[1] Lin S Y, Du B. Present Situation of Welding Industry and Dependent Innovation Strategy. Report of Harbin Welding Institute, 2006
(林尚扬, 杜兵. 焊接行业现状与自主创新战略. 哈尔滨焊接研究所技术报告, 2006)
[2] Lucas W. In: Japan Welding Society ed., Proc 8th Int Welding Symposium, Osaka, Japan: Japan Welding Society, 2008: 189
[3] Harwig D, Gordon R. In: Davis S A ed., Proc 6th Int Conf on Trends in Welding Research, Materials Park, Ohio: ASM International, 2003: 995
[4] Zhang Y M, Zhang S B, Jiang M. Weld J, 2002; 81: 248s
[5] Zhang Y M, Zhang S B. Weld J, 1999; 75: 53s
[6] Dong C L, Wu L, Shao Y C. China Mech Eng, 2000; 11:577
(董春林, 吴林, 邵亦陈. 中国机械工程, 2000; 11: 577)
[7] Martikainen J. J Mater Process Technol, 1995; 52: 68
[8] Keanini R G, Rubinsky B. Int J Heat Mass Transfer, 1993; 36: 3283
[9] Fan H G, Kovacevic R. J Phys, 1999; 32D: 2902
[10] Nehad A K. Int Comm Heat Mass Transfer, 1995; 22: 779
[11] Dong H G, Gao H M, Wu L. Trans China Weld Inst, 2002; 23(4): 24
(董洪刚, 高洪明, 吴林. 焊接学报, 2002; 23(4): 24)
[12] Lei Y C, Zheng H J, Chng X N. Trans China Weld Inst, 2003; 24(1): 44
(雷玉成, 郑惠锦, 程晓农. 焊接学报, 2003; 24(1): 44)
[13] Li L, Hu S S. J Tianjin Univ, 2007; 40(10): 260
(李力, 胡绳荪. 天津大学学报, 2007; 40(10): 260)
[14] Wu C S, Wang H G, Zhang M X. Acta Metall Sin, 2006; 42: 311
(武传松, 王怀刚, 张明贤. 金属学报, 2006; 42: 311)
[15] Wu C S, Wang H G, Zhang Y M. Weld J, 2006; 85: 284s
[16] Wu C S, Hu Q X, Zhang Y M. Comput Mater Sci, 2009; 46: 49
[17] Osher S, Sethian J A. J Comput Phys, 1988; 79: 12
[18] Ki H, Mohanty P S, Mazumder J. Numer Heat Transfer, 2005; 48B: 125
[19] Wu C S. Welding Thermal Processes and Molten Pool Behaviors. Beijing: China Machine Press, 2008: 106
(武传松. 焊接热过程与熔池形态. 北京: 机械工业出版社, 2008: 106)
[20] Messler Jr R W. Principles of Welding–Processes, PhysicsChemistry and Metallurgy. New York: John Wiley & Sons, Inc. 1999: 291
[21] Wang X J, Wu C S. Research Report of Institute of Materials Joining, Shandong University, 2009
(王小杰, 武传松. 山东大学材料连接研究所技术报告, 2009)

[1] 徐斌,胡庆贤,陈树君,蒋凡,王晓丽. K-PAW准稳态过程小孔与熔池动态行为的数值模拟*[J]. 金属学报, 2016, 52(7): 804-810.
[2] 菅晓霞,武传松. e蒸气对等离子弧焊接熔池行为的影响*[J]. 金属学报, 2016, 52(11): 1467-1476.
[3] 胥国祥, 张卫卫, 刘朋, 杜宝帅. 激光+GMAW复合热源焊熔池流体流动的数值分析*[J]. 金属学报, 2015, 51(6): 713-723.
[4] 王理林, 林鑫, 王永辉, 宇红雷, 黄卫东. 激光重熔熔池凝固组织的实时观察研究[J]. 金属学报, 2015, 51(4): 492-498.
[5] 吴宣楠,冯妍卉,李岩,李亚飞,张欣欣,武传松. 穿孔等离子弧焊接弧与熔池的耦合模拟及正交分析*[J]. 金属学报, 2015, 51(11): 1365-1376.
[6] 张刚, 石玗, 李春凯, 黄健康, 樊丁. 熔池三维自由表面状态与TIG焊熔透的相关性研究*[J]. 金属学报, 2014, 50(8): 995-1002.
[7] 李岩,冯妍卉,张欣欣, 武传松. 考虑小孔演变的等离子弧焊接动态热源模型及验证[J]. 金属学报, 2013, 49(7): 804-810.
[8] 裴莹蕾,吴爱萍,单际国,任家烈. 基于熔池流动分析的高速激光焊驼峰焊道形成过程研究[J]. 金属学报, 2013, 49(6): 725-730.
[9] 张涛 武传松 陈茂爱. 穿孔等离子弧焊接熔池流动和传热过程的数值模拟[J]. 金属学报, 2012, 48(9): 1025-1032.
[10] 裴莹蕾 单际国 任家烈. 不锈钢薄板高速激光焊驼峰焊道形成倾向及其影响因素[J]. 金属学报, 2012, 48(12): 1431-1436.
[11] 张海鸥 王超 王桂兰. 外磁场下MIG焊梯度功能材料制备模拟及实验研究[J]. 金属学报, 2011, 47(9): 1221-1226.
[12] 孙俊华 武传松 秦国梁. 受控脉冲PAW过程小孔动态变化的数值模拟[J]. 金属学报, 2011, 47(8): 1061-1066.
[13] 霍玉双 武传松 陈茂爱. 等离子弧焊接小孔形状和穿孔过程的数值分析[J]. 金属学报, 2011, 47(6): 706-712.
[14] 张转转 胥国祥 武传松. 基于小孔形状的TCS不锈钢激光+GMAW-P复合焊热场模型[J]. 金属学报, 2011, 47(11): 1450-1458.
[15] 贾传宝 武传松 高进强. 受控脉冲穿孔等离子弧焊小孔热滞后效应的研究[J]. 金属学报, 2010, 46(8): 991-996.