Please wait a minute...
金属学报  2010, Vol. 46 Issue (6): 641-646    DOI: 10.3724/SP.J.1037.2009.00856
  论文 本期目录 | 过刊浏览 |
节约型双相不锈钢2101高温变形过程中微观组织演化
方轶琉1;  刘振宇1;  张维娜1; 王国栋1; 宋红梅2; 江来珠2
1.东北大学轧制技术及连轧自动化国家重点实验室; 沈阳 110819
2.宝钢股份研究院不锈钢技术中心; 上海 201900
MICROSTRUCTURE EVOLUTION OF LEAN DUPLEX STAINLESS STEEL 2101 DURING HOT DEFORMATION
FANG Yiliu1; LIU Zhenyu1; ZHANG Weina1; WANG Guodong1; SONG Hongmei2; JIANG Laizhu2
1.State Key Laboratory of Rolling and Automation; Northeastern University; Shenyang 110819
2.Research Institute for Stainless Steels; R&D Center; Baosteel Co.; Shanghai 201900
引用本文:

方轶琉 刘振宇 张维娜 王国栋 宋红梅 江来珠. 节约型双相不锈钢2101高温变形过程中微观组织演化[J]. 金属学报, 2010, 46(6): 641-646.
, , , , . MICROSTRUCTURE EVOLUTION OF LEAN DUPLEX STAINLESS STEEL 2101 DURING HOT DEFORMATION[J]. Acta Metall Sin, 2010, 46(6): 641-646.

全文: PDF(4724 KB)  
摘要: 

采用电子背散射衍射技术(EBSD)和TEM研究了节约型双相不锈钢2101在温度为1000℃和应变速率为5 s-1的高温变形过程中的微观组织演化. 结果表明, 铁素体和奥氏体都发生以小角度晶界不断向大角度晶界转变为特征的连续动态再结晶(CDRX).固溶退火后双相不锈钢奥氏体内出现大量退火孪晶. 随变形量增加, 奥氏体中具有Σ3位向关系的晶界逐渐消失. 高温变形过程中双相微观组织演化机制的耦合作用共同决定了流变曲线特征.

关键词 节约型双相不锈钢2101 高温变形 连续动态再结晶 孪晶    
Abstract

Duplex stainless steels (DSSs) were processed to have a balanced microstructure containing approximately equal amounts of ferrite and austenite, which exhibit exceptional mechanical properties and corrosion resistance. Lean duplex stainless steel (LDX) 2101 with lower contents of Ni and Mo had been developed in order to further reduce the cost. The coexistence of ferrite and austenite during hot deformation led to a complicated deformation behavior. However, little research had been dedicated to studying the microstructure evolution in LDX 2101 compared with traditional DSSs. In addition, the reported results of microstructure evolution both in ferrite and austenite phases of traditional DSSs exhibited obvious controversy. In the present paper, the microstructure evolution of the LDX 2101 during hot compression at a strain rate of 5 s−1 and 1000 ℃ was studied by electron backscatter diffraction (EBSD) together with TEM. The results showed that continuous dynamic recrystallization (CDRX) occurred both in ferrite and austenite phases by gradual transformation of ow angle grain boundary into high angle rain boundary. In addition, a large number of Σ3 twins appeared after solution anneaing treatment. The hot deformation resulted in a progressive disappearance of the Σ3 twin boundaries in austenite phase. Flow curve characteristics of the LDX 211 during hot deformation were interpreted by the coupling behaviors of the microstructure evolution of its both phases.

Key wordslean duplex stainless steel 2101    hot deformation    continuous dynamic recrystallization (CDRX)    twin
收稿日期: 2009-12-23     
基金资助:

国家自然科学基金项目50734002和国家重点基础研究发展计划项目2004CB619108资助

作者简介: 方轶琉, 男, 1983年生, 博士生

[1] Iza–Mendia A, Pinol–Juez A, Urcola J J, Gutierrez I. Metall Mater Trans, 1998; 29A: 2975
[2] Balancin O, Hoffmann W A M, Jonas J J. Metall Mater Trans, 2000; 31A: 1353
[3] Fan G W, Liu J, Han P D, Qiao G J. Mater Sci Eng, 2009; A515: 108
[4] Dehghan–Manshadi A, Hodgson P D. J Mater Sci, 2008; 43: 6272
[5] Cizek P, Wynne B P. Mater Sci Eng, 1997; A230: 88
[6] Liljas M, Johansson P, Liu H P, Olsson C A. Steel Res Int, 2008; 79: 466
[7] Li L F, Yang W Y, Sun Z Q. Metall Mater Trans, 2006; 37A: 609
[8] Eghbali B, Abdollah–Zadeh A, Beladi H, Hodgson P D. Mater Sci Eng, 2006; A435–436: 499
[9] Wan J L, Sun X J, Gu J L, Chen N P. Acta Metall Sin, 1999; 35: 1031
(万菊林, 孙新军, 顾佳琳, 陈南平. 金属学报, 1999; 35: 1031)
[10] Li L F, Yang W Y, Sun Z Q. Acta Metall Sin, 2003; 39: 419
(李龙飞, 杨王玥, 孙祖庆. 金属学报, 2003; 39: 419)
[11] Gertsman V Y, Tangri K. Philos Mag, 1991; 64A: 1319
[12] Beladi H, Cizek P, Hodgson P D. Metall Mater Trans, 2006; 37A: 2975
[13] Jorge–Badiola D, Iza–Mendia A, Gutierrez I. Mater Sci Eng, 2005; A394: 445
[14] Poulat S, Decamps B, Priester L. Philos Mag, 1999; 79A: 2655
[15] Priester L. Mater Sci Eng, 2001; A309–310: 430
[16] Belyakov A, Gao W, Miura H, Sakai T. Metall Mater Trans, 1998; 29A: 1073
[17] Jinmenze J A, Carreno F, Ruano O A. Mater Sci Technol, 1999; 15: 127
[18] Duprez L, De Cooman B C, Akdut N. Metall Mater Trans, 2002; 33A: 1931

[1] 赵鹏, 谢光, 段慧超, 张健, 杜奎. 两种高代次镍基单晶高温合金热机械疲劳中的再结晶行为[J]. 金属学报, 2023, 59(9): 1221-1229.
[2] 白佳铭, 刘建涛, 贾建, 张义文. WTa型粉末高温合金的蠕变性能及溶质原子偏聚[J]. 金属学报, 2023, 59(9): 1230-1242.
[3] 万涛, 程钊, 卢磊. 组元占比对层状纳米孪晶Cu力学行为的影响[J]. 金属学报, 2023, 59(4): 567-576.
[4] 邵晓宏, 彭珍珍, 靳千千, 马秀良. 镁合金LPSO/SFs结构间{101¯2}孪晶交汇机制的原子尺度研究[J]. 金属学报, 2023, 59(4): 556-566.
[5] 高栋, 周宇, 于泽, 桑宝光. 液氮温度下纯Ti动态塑性变形中的孪晶变体选择[J]. 金属学报, 2022, 58(9): 1141-1149.
[6] 卢磊, 赵怀智. 异质纳米结构金属强化韧化机理研究进展[J]. 金属学报, 2022, 58(11): 1360-1370.
[7] 潘庆松, 崔方, 陶乃镕, 卢磊. 纳米孪晶强化304奥氏体不锈钢的应变控制疲劳行为[J]. 金属学报, 2022, 58(1): 45-53.
[8] 戴进财, 闵小华, 周克松, 姚凯, 王伟强. 预变形与等温时效耦合作用下Ti-10Mo-1Fe/3Fe层状合金的力学性能[J]. 金属学报, 2021, 57(6): 767-779.
[9] 温斌, 田永君. 纳米孪晶金属和纳米孪晶共价材料的力学行为[J]. 金属学报, 2021, 57(11): 1380-1395.
[10] 余晨帆, 赵聪聪, 张哲峰, 刘伟. 选区激光熔化316L不锈钢的拉伸性能[J]. 金属学报, 2020, 56(5): 683-692.
[11] 刘杨,王磊,宋秀,梁涛沙. DD407/IN718高温合金异质焊接接头的组织及高温变形行为[J]. 金属学报, 2019, 55(9): 1221-1230.
[12] 董福涛,薛飞,田亚强,陈连生,杜林秀,刘相华. 退火温度对TWIP钢组织性能和氢致脆性的影响[J]. 金属学报, 2019, 55(6): 792-800.
[13] 高钰璧, 丁雨田, 陈建军, 许佳玉, 马元俊, 张东. 挤压态GH3625合金冷变形过程中的组织和织构演变[J]. 金属学报, 2019, 55(4): 547-554.
[14] 万志鹏, 王涛, 孙宇, 胡连喜, 李钊, 李佩桓, 张勇. GH4720Li合金热变形过程动态软化机制[J]. 金属学报, 2019, 55(2): 213-222.
[15] 周博, 隋曼龄. AZ31镁合金拉伸扭折带结构的产生及交互作用机制[J]. 金属学报, 2019, 55(12): 1512-1518.