Please wait a minute...
金属学报  2010, Vol. 46 Issue (6): 723-728    DOI: 10.3724/SP.J.1037.2009.00501
  论文 本期目录 | 过刊浏览 |
Mn-Cu耐候钢的表面龟裂
王 雷1; 张思勋2; 董俊华1;柯伟1; 刘春明2
1.中国科学院金属研究所金属腐蚀与防护国家重点实验室; 沈阳 110016
2.东北大学材料与冶金学院; 沈阳 110819
SURFACE CRAZING OF Mn–Cu WEATHERING STEEL
WANG Lei 1; ZHANG Sixun 2; DONG Junhua 1; KE Wei 1; LIU Chunming 2
1. State Key Laboratory for Corrosion and Protection; Institute of Metal Research; Chinese Academy of Sciences; Shenyang 110016
2. Institute of Materials and Metallurgy; Northeast University; Shenyang 110819
引用本文:

王雷 张思勋 董俊华 柯伟 刘春明. Mn-Cu耐候钢的表面龟裂[J]. 金属学报, 2010, 46(6): 723-728.
. SURFACE CRAZING OF Mn–Cu WEATHERING STEEL[J]. Acta Metall Sin, 2010, 46(6): 723-728.

全文: PDF(3210 KB)  
摘要: 

通过在1260℃进行的保温实验, 研究了Mn-Cu耐候钢的龟裂现象. 结果表明, 在氧化气氛中经过不同时间高温保温处理, Mn-Cu耐候钢表层均出现了不同程度的龟裂. EPMA结果表明, Cu在基体/氧化皮界面区出现富集, Cu在珠光体中的含量高于铁素体. Mn-Cu耐候钢在高温保温过程中表层发生的脱碳现象导致脱碳层中珠光体析出数量减少, 致使过多的Cu在晶界析出偏聚、形成富Cu相, 进而加剧钢的表面龟裂. 在还原气氛中高温保温处理后, 没有发现Mn-Cu耐候钢出现上述现象.

关键词 Mn-Cu耐候钢 龟裂 高温保温 脱碳    
Abstract

Craze cracks and oxidation appeared on the surfaces of the Mn–Cu weathering steel samples after different soaking times at 1260 ℃in the oxidizing conditions. EPMA result shows that Cu enriches at the interface of matrix/scale, Cu concentration in pearite is higher than that in ferrite. OM observaion shows that decarbonization phenomenon occurred near surface of steel after soaking in high temperature experiments, which resulted in an obvious decrease of pearlite amount, so more Cu segregation in grain oundaies and formed Cu–enriched phase, and caused serous surface crazing at last. Hoever, under the educing conditionthe craze crack phenomenon did not occur after soaking

Key wordsMn-Cu weathering steel    surface crazing    soaking    decarbonization
收稿日期: 2009-07-21     
基金资助:

国家重点基础研究发展计划项目2004CB619101与国家自然科学基金项目50499336和50971120资助

作者简介: 王雷, 男, 1970年生, 博士生

[1] Chen X H, Dong J H, Han E H, Ke W. Chin Pat, ZL200510045624.6, 2005
(陈新华, 董俊华, 韩恩厚, 柯 \ \ 伟. 中国专利, ZL20051004-5624.6, 2005)
[2] Speller F N. Corrosion, Causes and Prevention. 3rd Ed., New York: McGraw–Hill Book Company, 1951: 106
[3] Townsend H E. Corrosion, 2001; 57: 497
[4] Hou W T, Liang C F. Corrosion, 2004; 60: 313
[5] Kumar V, Chaudlhuri S K. Corros Rev, 2003; 21: 293
[6] Bauer O. Stahl Eisen, 1921; 41: 37
[7] Gertsman S L, Tardif H P. Iron Age, 1952; 169: 136
[8] Nicholson A, Murray J D. J Iron Steel Inst, 1965; 203: 1007
[9] Habraken L, Lecomte–Beckers J. Copper in Iron and Steel. New York: John Wiley & Sons Inc., 1982: 45
[10] Salter W J M. J Iron Steel Inst, 1966; 204: 478
[11] Chen X H, Dong J H, Han E H, Ke W. J Mater Sci Technol , 2007; 23: 307
[12] Melford D A. J Iron Steel Inst, 1962; 200: 290
[13] Akamatsu S, Senuma T, Takada Y, Hasebe M. Mater Sci Technol, 1999; 15: 1301
[14] Imai N, Komatsubara N, Kunishige K. J Iron Steel Inst, 1997; 37: 224
[15] Li X C, Chen G, Zhu W X, Chen C B, Mei D S. Trans Chin Soc Agri Mach. 2003; 34: 138
(李新城, 陈光, 朱伟兴, 陈长白, 梅东生. 农业机械学报, 2003; 34: 138)

[1] 王周头, 袁清, 张庆枭, 刘升, 徐光. 冷轧中碳梯度马氏体钢的组织与力学性能[J]. 金属学报, 2023, 59(6): 821-828.
[2] 金鑫焱, 储双杰, 彭俊, 胡广魁. 露点对连续退火0.2%C-1.5%Si-2.5%Mn高强钢选择性氧化及脱碳的影响[J]. 金属学报, 2023, 59(10): 1324-1334.
[3] 郑成明, 田青超. 合金元素对顶头钢氧化行为的影响[J]. 金属学报, 2019, 55(4): 427-435.
[4] 张凯, 陈银莉, 孙彦辉, 徐志军. 加热过程中H2O(g)对55SiCr弹簧钢脱碳的影响[J]. 金属学报, 2018, 54(10): 1350-1358.
[5] 朱苗勇; 周海斌; 陈兆平; 黄宗泽 . 不锈钢冶炼用AOD炉内的射流行为和流体流动[J]. 金属学报, 2006, 42(6): 653-656 .
[6] 尹小东; 黄宗泽; 顾文兵 . 真空脱碳过程的数学模拟研究[J]. 金属学报, 2005, 41(8): 876-880 .
[7] 朱苗勇; 黄宗泽 . RH真空脱碳精炼过程的模拟研究[J]. 金属学报, 2001, 37(1): 91-94 .
[8] 李家宝; 覃明 . 弹簧钢60Si2Mn脱碳层软化的表征与研究[J]. 金属学报, 2000, 36(3): 287-290 .
[9] 区铁; 周文英; 张捷宇; 刘建功 . 环流式真空脱气装置的脱碳反应速率[J]. 金属学报, 1999, 35(7): 735-738 .