Please wait a minute...
金属学报  2010, Vol. 46 Issue (2): 141-146    DOI: 10.3724/SP.J.1037.2009.00247
  论文 本期目录 | 过刊浏览 |
珠光体钢丝冷拉拔过程中微观组织及铁素体微区取向与织构演变
张晓丹1;A Godfrey 1;刘伟1;刘庆2
1.清华大学材料科学与工程系; 北京 100084
2.重庆大学材料学院; 重庆 400044
EVOLUTIONS OF MICROSTRUCTURE AND FERRITIC MICRO–ORIENTATION AND TEXTURE IN A PEARLITIC STEEL WIRE DURING COLD DRAWING
ZHANG Xiaodan1; A. Godfrey1; LIU Wei1;LIU Qing2
1.Department of Materials Science and Engineering; Tsinghua University; Beijing 100084
2.School of Materials Science and Engineering; Chongqing University; Chongqing 400044
引用本文:

张晓丹 A Godfrey 刘伟 刘庆. 珠光体钢丝冷拉拔过程中微观组织及铁素体微区取向与织构演变[J]. 金属学报, 2010, 46(2): 141-146.
, , , . EVOLUTIONS OF MICROSTRUCTURE AND FERRITIC MICRO–ORIENTATION AND TEXTURE IN A PEARLITIC STEEL WIRE DURING COLD DRAWING[J]. Acta Metall Sin, 2010, 46(2): 141-146.

全文: PDF(4857 KB)  
摘要: 

采用电子通道衬度(ECC)和电子背散射衍射(EBSD)技术研究了珠光体钢丝冷拉拔过程中微观组织的变化、铁素体微区取向与织构演变. 结果表明, 珠光体变形组织中存在剪切带(S带),它们的出现与渗碳体片条和拉拔方向之间的夹角有关: 夹角越大, S带越多.随着拉拔应变量的增大, 纵截面上珠光体片条逐渐转向拉拔方向, S带方向与拉拔方向的夹角逐渐减小. 珠光体内的S带会引起铁素体晶粒局部微区取向急剧变化, 从而使原有的珠光体团分裂成若干个由铁素体大角度晶界相隔的区域. 钢丝拉拔过程中形成平行于拉拔方向的铁素体<110>丝织构, 随着应变量的增大, 平行于拉拔方向的铁素体<110>丝织构增强, 其它丝织构组分减弱; 靠近钢丝中心区域内的<110>丝织构增强幅度大于其它区域.

关键词 珠光体钢丝 冷拉拔 EBSD 织构    
Abstract

Cold drawn high–carbon pearlitic steel wires have the highest strength of all mass–produced steel materials and are widely used in industry for a variety of applications, including cables for suspension bridges, steel cords for automobile tires and springs. At present the maximum tensile strength of high–carbon steel wires has already reached a value of 5.7 GPa. The properties of steel wires, including strength, fatigue properties and torsinal properties, are deeply affected by microstructure and ferritic micro–orientation and texture in the deformed pearlite. In this study, the evolutions of microstructure and ferritic micro–orientation and texture were investigated in a pearlitic steel wire during cld drawing using electron channel contrast (ECC) and electron backscatter diffraction (EBSD) techniques. The results show that there exist shear–bands (S–bands) in the deformed pearlite microstructure. Their appearance is related to the angle between cementite plates and the drawing axis: the larger the angle is, the more S–bands appear in the structure. The pearlite structure turns to the drawing direction and the angle between S–band and drawing axis decreases with the increase of strain.  The S–bands in the deformed pearlite colony induce the rapid change of local orientation of ferrite, and make the pearlite colony subdivide into several areas by high angle boundaries of ferrite. The strog h110i fibre texture f ferrite parallel to the drawing direction forms with the increase of strain, but the intensity of h110i fibre texture of ferrite is inhomogeneous from the cetre to surface in longitudinal section with the strongest in the centre and the weakest near the urface.

Key wordsPearlitic Steel Wire    Cold Drawing    EBSD    Micro-texture
收稿日期: 2009-04-20     
基金资助:

国家自然科学基金资助项目50890172

作者简介: 张晓丹, 男, 1981年生, 博士

[1] Ochiai M, Nishida S, Ohba H, Kawata H. J Iron Steel Inst, 1993; 79: 89
[2] Zelin M. Acta Mater, 2002; 50: 4431
[3] Heizmann J J, Tidu A, Bolle B, Peeters L. Wire J Int, 1999; 32(7): 150
[4] Liu Y D, Jiang Q W, Wang G, Wang Y D, Tidu A, Zuo L. J Mater Sci Technol, 2005; 21: 357
[5] VanEssen C G, Schulson E M, Donaghay R H. Nature, 1970; 225: 847
[6] Joy D C, Newbury D E, Davidson D L. J Appl Phys, 1982; 53: 81
[7] Adams B L, Dingley D J, Kunze K, Wright S I. Mater Sci Forum, 1994; 157–162: 31
[8] Hurley P J, Humphreys F J. Acta Mater, 2003; 51: 1087
[9] Jensen J D. Acta Metall Mater, 1995; 43: 4117
[10] Li B L, Godfrey A, Liu Q. Mater Sci Forum, 2002; 408–412: 1185
[11] Yao Z Y, Liu Q, Godfrey A, LiuW. Acta Metall Sin, 2009; 45: 641
(姚宗勇, 刘 庆, Godfrey A, 刘伟. 金属学报, 2009; 45: 641)
[12] Huges D A, Hansen N. Metall Trans, 1993; 24A: 2021
[13] Houtte P V,Watte P, Aernoudt E, Sevillano J G, Lefever I, Raemdonck W V. Mater Sci Forum, 1994; 157–162: 1881
[14] Liu Y D, Jiang Q W, Zhao X, Zuo L, Liang Z D. Acta Metall Sin, 2002; 38: 1215
(刘沿东, 蒋奇武, 赵骧, 左良, 梁志德. 金属学报, 2002; 38: 1215)
[15] Walentek A, Seefeldt M, Verlinden B, Aernoudt E, Van Houtte P. J Microscopy, 2006; 224: 256
[16] Walentek A, Seefeldt M, Verlinden B, Aernoudt E, Van Houtte P. Mater Sci Eng, 2008; A483–484: 716
[17] Li S, Yip T H, Ramanujan R V, Liang M H. Mater Sci Technol, 2003; 19: 902

[1] 常松涛, 张芳, 沙玉辉, 左良. 偏析干预下体心立方金属再结晶织构竞争[J]. 金属学报, 2023, 59(8): 1065-1074.
[2] 赵亚峰, 刘苏杰, 陈云, 马会, 马广财, 郭翼. 铁素体-贝氏体双相钢韧性断裂过程中的夹杂物临界尺寸及孔洞生长[J]. 金属学报, 2023, 59(5): 611-622.
[3] 娄峰, 刘轲, 刘金学, 董含武, 李淑波, 杜文博. 轧制态Mg-xZn-0.5Er合金板材组织及室温成形性能[J]. 金属学报, 2023, 59(11): 1439-1447.
[4] 周红伟, 高建兵, 沈加明, 赵伟, 白凤梅, 何宜柱. 高温低周疲劳下C-HRA-5奥氏体耐热钢中孪晶界演变[J]. 金属学报, 2022, 58(8): 1013-1023.
[5] 姜伟宁, 武晓龙, 杨平, 顾新福, 解清阁. 热轧硅钢表层动态再结晶区形成规律及剪切织构特征[J]. 金属学报, 2022, 58(12): 1545-1556.
[6] 杨平, 王金华, 马丹丹, 庞树芳, 崔凤娥. 成分对真空脱锰法相变控制高硅电工钢{100}织构的影响[J]. 金属学报, 2022, 58(10): 1261-1270.
[7] 丁宁, 王云峰, 刘轲, 朱训明, 李淑波, 杜文博. 高应变速率多向锻造Mg-8Gd-1Er-0.5Zr合金的微观组织、织构及力学性能[J]. 金属学报, 2021, 57(8): 1000-1008.
[8] 颜孟奇, 陈立全, 杨平, 黄利军, 佟健博, 李焕峰, 郭鹏达. 热变形参数对TC18钛合金β相组织及织构演变规律的影响[J]. 金属学报, 2021, 57(7): 880-890.
[9] 王金亮, 王晨充, 黄明浩, 胡军, 徐伟. 低应变预变形对变温马氏体相变行为的影响规律及作用机制[J]. 金属学报, 2021, 57(5): 575-585.
[10] 左良, 李宗宾, 闫海乐, 杨波, 赵骧. 多晶Ni-Mn-X相变合金的织构化与功能行为[J]. 金属学报, 2021, 57(11): 1396-1415.
[11] 许占一, 沙玉辉, 张芳, 章华兵, 李国保, 储双杰, 左良. 取向硅钢二次再结晶过程中的取向选择行为[J]. 金属学报, 2020, 56(8): 1067-1074.
[12] 于雷,罗海文. 部分再结晶退火对无取向硅钢的磁性能与力学性能的影响[J]. 金属学报, 2020, 56(3): 291-300.
[13] 吴翔,左秀荣,赵威威,王中洋. NM500耐磨钢拉伸过程中TiN的破碎机制[J]. 金属学报, 2020, 56(2): 129-136.
[14] 程超,陈志勇,秦绪山,刘建荣,王清江. TA32钛合金厚板的微观组织、织构与力学性能[J]. 金属学报, 2020, 56(2): 193-202.
[15] 杜子杰, 李文渊, 刘建荣, 锁红波, 王清江. CMT增材制造TC4-DT合金组织均匀性与力学性能一致性研究[J]. 金属学报, 2020, 56(12): 1667-1680.