Please wait a minute...
金属学报  2020, Vol. 56 Issue (4): 583-600    DOI: 10.11900/0412.1961.2019.00373
  综述 本期目录 | 过刊浏览 |
电磁冶金技术研究新进展
任忠鸣1,2(),雷作胜1,2,李传军1,2,玄伟东1,2,钟云波1,2,李喜1,2
1.上海大学省部共建高品质特殊钢冶金与制备国家重点实验室 上海 200444
2.上海大学上海市钢铁冶金新技术应用重点实验室 上海 200444
New Study and Development on Electromagnetic Field Technology in Metallurgical Processes
REN Zhongming1,2(),LEI Zuosheng1,2,LI Chuanjun1,2,XUAN Weidong1,2,ZHONG Yunbo1,2,LI Xi1,2
1.State Key Laboratory of Advanced Special Steel, Shanghai University, Shanghai 200444, China
2.Shanghai Key Laboratory of Advanced Ferrometallurgy, Shanghai University, Shanghai 200444, China
引用本文:

任忠鸣,雷作胜,李传军,玄伟东,钟云波,李喜. 电磁冶金技术研究新进展[J]. 金属学报, 2020, 56(4): 583-600.
Zhongming REN, Zuosheng LEI, Chuanjun LI, Weidong XUAN, Yunbo ZHONG, Xi LI. New Study and Development on Electromagnetic Field Technology in Metallurgical Processes[J]. Acta Metall Sin, 2020, 56(4): 583-600.

全文: PDF(11058 KB)   HTML
摘要: 

电磁冶金技术是高品质钢生产的必备手段。本文综述了近年来电磁冶金技术的发展,围绕连铸的全流程,包括中间包电磁净化钢液、水口控流、结晶器内电磁搅拌和电磁制动等磁场控制流场、电磁软接触结晶器连铸、电磁场调控凝固组织、电磁场下固态相变及组织控制在内各方面,阐述了电磁场作用的机理,分析了应用电磁场技术的原理和特点,在电磁场控制流场领域提出了多模式定制磁场的概念,以满足高品质钢连铸中复杂状态的要求。在静磁场控制凝固组织领域提出应用强磁场热电磁力的新原理,并指出电磁冶金技术的发展需结合大数据的人工智能以更好发挥作用。

关键词 电磁场连铸净化凝固电磁软接触电磁搅拌电磁制动    
Abstract

Electromagnetic metallurgy technology is an essential method of high quality steel production. This article reviews the development of electromagnetic metallurgy technology in recent years, focusing on the whole process of continuous casting, including electromagnetic purification of steel in tundish, nozzle flow control, mould electromagnetic stirring and electromagnetic brake, flow field control via magnetic field, electromagnetic soft contact electromagnetic continuous casting, electromagnetic field regulation of solidification structure, solid phase transformation and microstructure control under electromagnetic field, the mechanism of electromagnetic field action is explained, the principle and characteristics of electromagnetic field technology are analyzed, and the concept of multi-mode magnetic field is proposed in the field of flow field control by using electromagnetic field to meet the requirements of complex states in high quality steel continuous casting. In the field of static magnetic field control solidification structure, a new principle of applying high thermal electromagnetic force is proposed, and it is presented that the development of electromagnetic metallurgy technology needs to combine the artificial intelligence of big data to play a better role.

Key wordselectromagnetic field    continuous casting    purification    solidification    electromagnetic soft contact    electromagnetic stirring    electromagnetic brake
收稿日期: 2019-11-04     
ZTFLH:  TF19  
基金资助:国家自然科学基金项目(51690162);国家自然科学基金项目(51604172);国家科技重大专项项目(2017-Ⅶ-0008-0102)
作者简介: 任忠鸣,男,1959年生,教授,博士
图1  施加电磁力时金属熔体中夹杂物上的受力情况示意图[3]
图2  电磁力去除液态金属中夹杂物的示意图[3]
图3  中间包电磁净化去除钢液中非金属夹杂物的示意图
图4  不同旋转速度下钢液在中间包中的平均停留时间
图5  不同电流强度下钢液在中间包内的氧含量降低值
图6  磁场增强连续电渣重熔装置示意图[8]

Magnetic flux mT

Influence of decreasing the interface heat transferInfluence of inducing heat in moldInfluence of inducing heat in metal

Heat transfer coefficient

103 m2·K

Starting point of solidification

mm

Inducing

heat

106 J·m-3

Starting point of solidification

mm

Magnetic

flux

mT

Starting point of solidification

mm

013.71.401.401.4
409.22.421.73.4401.8
表1  在电磁场作用下感应加热和减少界面换热对凝固起始点位置的影响的计算结果[23]
图7  调幅磁场电磁连铸实验系统示意图
图8  电磁制动方式对结晶器内流场的影响[39]
图9  电磁场控制连铸中结晶器内流动研究路线
图10  钢连铸过程热模拟实验平台功能示意图
图11  轴承钢连铸结晶器电磁搅拌对铸坯偏析影响
图12  磁场下纯Al和Bi凝固时的DTA曲线[52,53]
图13  有无磁场下籽晶重熔初始区域微观组织[54]
图14  有无磁场下变截面平台处微观组织[55]
图15  在温度梯度和抽拉速率分别为104 K/cm和5 μm/s下,有无4 T磁场时,固/液界面下15 mm处Cr元素的径向分布[74]
图16  有无纵向静磁场下定向凝固GCr15轴承钢CET工艺条件
图17  有无4 T磁场强度下GCr18Mo钢凝固末端凝固缩孔在不同温度梯度和抽拉速率下的体积分数[76]
[1] Asai S. Recent development and prospect of electromagnetic processing of materials [J]. Sci. Technol. Adv. Mater., 2000, 1: 191
[2] Li X, Ren Z M. Thermoelectric magnetic effect and its effect on the solidification structure under static magnetic fields [J]. Mater. China, 2014, 33: 349
[2] 李 喜, 任忠鸣. 静磁场下热电磁效应及其对凝固组织的影响 [J]. 中国材料进展, 2014, 33: 349
[3] Zhong Y B. Metalloid particles' migration in molten metals in an electromagnetic forec field and it's application [D]. Shanghai: Shanghai University, 2000
[3] 钟云波. 电磁力场作用下液态金属中非金属颗粒迁移规律及其应用研究 [D]. 上海: 上海大学, 2000
[4] Leenov D, Kolin A. Theory of electromagnetophoresis. I. Magnetohydrodynamic forces experienced by spherical and symmetrically oriented cylindrical particles [J]. J. Chem. Phys., 1954, 22: 683
[5] Zhong Y B, Ren Z M, Deng K, et al. Continuously purifying experiment of aluminum base alloy melt by travelling magnetic field [J]. Chin. J. Nonferrous Met., 2001, 11(2): 167
[5] 钟云波, 任忠鸣, 邓 康等. 行波磁场连续净化铝合金液实验 [J]. 中国有色金属学报, 2001, 11(2): 167
[6] Wang Y, Zhong Y B, Ren Z M, et al. Numerical simulation of molten steel flow in centrifugal flow tundish [J]. Acta Metall. Sin., 2008, 44: 1203
[6] 王 赟, 钟云波, 任忠鸣等. 离心中间包内钢液流动的数值模拟 [J]. 金属学报, 2008, 44: 1203
[7] Wang Y, Zhong Y B, Wang B J, et al. Numerical and experimental analysis of flow phenomenon in centrifugal flow tundish [J]. ISIJ Int., 2009, 49: 1542
[8] Zhong Y B, Li Q, Fang Y P, et al. Effect of transverse static magnetic field on microstructure and properties of GCr15 bearing steel in electroslag continuous casting process [J]. Mater. Sci. Eng., 2016, A660: 118
[9] Wang H, Zhong Y B, Li Q, et al. Influences of the transverse static magnetic field on the droplet evolution behaviors during the low frequency electroslag remelting process [J]. ISIJ Int., 2017, 57: 2157
[10] He J C, Marukawa K, Wang Q. Ladle with steel heating and tapping set and its tapping method [P]. Chin Pat, 200610045875.9, 2008
[10] 赫冀成, 丸川熊净, 王 强. 一种带有加热出钢装置的钢包及其出钢方法 [P]. 中国专利, 200610045875.9, 2008)
[11] Li D J, Wang Q, Liu X A, et al. A new steel teeming technology by using electromagnetic induction heating system in ladle [J]. J. Iron Steel Res. Int., 2012, 19: 766
[12] Jia H H, Yu Z, Lei Z S, et al. Water modelling on the effect of swirling flow nozzle on flow field in continuous casting mold of billet [J]. Acta Metall. Sin., 2008, 44: 375
[12] 贾洪海, 于 湛, 雷作胜等. 旋流水口对小方坯连铸结晶器流场影响的水模拟 [J]. 金属学报, 2008, 44: 375
[13] Li D W, Su Z J, Marukawa K, et al. Suppression of effect of uneven velocity in submerged entry nozzle in round billet continuous casting process using electromagnetic swirling flow [J]. J. Iron Steel Res. Int., 2012, 19(Suppl.1): 906
[14] Su Z J, Li D W, Marukawa K, et al. Effect of electromagnetic swirling flow in immersion nozzle on round continuous casting process of steel [J]. Contin. Cast., 2011(Suppl.1): 183
[14] 苏志坚, 李德伟, 丸川雄净等. 电磁旋流水口在钢圆坯连铸中的作用 [J]. 连铸, 2011(增刊1): 183
[15] Li T J, Sassa K, Asai S. Surface quality improvement of continuously cast metals by imposing intermittent high frequency magnetic field and synchronizing the field with mold oscillation [J]. ISIJ Int., 1996, 36: 410
[16] Getselev Z N. Casting in an electromagnetic field [J]. JOM, 1971, 23(10): 3
[17] Vivès C. Electromagnetic refining of aluminum alloys by the CREM process: Part I. Working principle and metallurgical results [J]. Metall. Trans., 1989, 20B: 623
[18] Moreshita M, Ayata K, Koyama S, et al. Magnetohydrodynamics in Process Metallurgy [M]. San Diego: TMS, 1992: 267
[19] Jin B G, Wang Q, Liu Y, et al. Electromagnetic field distribution in two-section slitless mold for soft contact electromagnetic continuous casting [J]. ISIJ int., 2009, 49: 44
[20] Ren Z M, Deng K, Zhou Y M, et al. Soft contact electromagnetic continuous casting mold [P]. Chin Pat, 96222452.9, 1996
[20] 任忠鸣, 邓 康, 周月明等. 软接触电磁连铸结晶器 [P]. 中国专利: 96222452.9, 1996)
[21] Dong H F, Ren Z M, Zhong Y B, et al. Homogenization of the magnetic field in soft contact electromagnetic continuous casting [J]. J. Iron Steel Res., 1998, 10(2): 5
[21] 董华锋, 任忠明, 钟云波等. 软接触结晶器电磁连铸中磁场的均匀化 [J]. 钢铁研究学报, 1998, 10(2): 5
[22] Toh T, Takeuchi E, Hojo M, et al. Electromagnetic control of initial solidification in continuous casting of steel by low frequency alternating magnetic field [J]. ISIJ Int., 1997, 37: 1112
[23] Ren Z M, Dong H F, Deng K, et al. Influence of high frequency electromagnetic field on the initial solidification during electromagnetic continuous casting [J]. ISIJ Int., 2001, 41: 981
[24] Lei Z S, Ren Z M, Deng K, et al. Amplitude-modulated magnetic field coupled with mold oscillation in electromagnetic continuous casting [J]. ISIJ. Int, 2006, 46: 680
[25] Lei Z S, Ren Z M, Yan Y G, et al. Mold flux channel dynamic pressure in electromagnetic continuous casting [J]. Acta Metall. Sin., 2004, 40: 546
[25] 雷作胜, 任忠鸣, 阎勇刚等. 软接触结晶器电磁连铸保护渣道的动态压力 [J]. 金属学报, 2004, 40: 564
[26] Sumi I, Shimizu H, Nishioka S, et al. Initial solidification control of continuous casting using electromagnetic oscillation method [J]. ISIJ Int., 2003, 43: 807
[27] Fujisaki K. Magnetohydrodynamic stability in pulse electromagnetic casting [J]. IEEE Trans. Ind. Appl., 2003, 39: 1442
[28] Su Z J, Iwai K, Asai S. Characteristics of liquid metal motion driven by quasi-sinusoidal magnetic fields [J]. ISIJ. Int., 1999, 39: 1224
[29] Zhang Z F, Li T J, Jin J Z. Thermal simulation on meniscus motion in the continuous casting with multi-electromagnetic field [J]. Acta Metall. Sin., 2001, 37: 975
[29] 张志峰, 李廷举, 金俊泽. 复合电磁场作用下连铸金属液弯月面运动规律的热模拟研究 [J]. 金属学报, 2001, 37: 975
[30] Lei Z S, Ren Z M, Deng K, et al. Experimental study on mould oscillation-less continuous casting process under high frequency amplitude-modulated magnetic field [J]. ISIJ. Int., 2004, 44: 1142
[31] Hou X G, Wang E G, Zhang Y J, et al. Industrial application of stainless steel soft-contacting electromagnetic continuous casting [J]. Iron Steel, 2015, 50(11): 45
[31] 侯晓光, 王恩刚, 张永杰等. 不锈钢软接触电磁连铸的工业试验 [J]. 钢铁, 2015, 50(11): 45
[32] Najjar F M, Thomas B G, Hershey D E. Numerical study of steady turbulent flow through bifurcated nozzles in continuous casting [J]. Metall. Mater. Trans., 1995, 26B: 749
[33] Calderón-Ramos I, Morales R D, Salazar-Campoy M. Modeling flow turbulence in a continuous casting slab mold comparing the use of two bifurcated nozzles with square and circular ports [J]. Steel Res. Int., 2015, 86: 1610
[34] Timmel K, Eckert S, Gerbeth G. Experimental investigation of the flow in a continuous-casting mold under the influence of a transverse, direct current magnetic field [J]. Metall. Mater. Trans., 2011, 42B: 68
[35] Ha M Y, Lee H G, Seong S H. Numerical simulation of three-dimensional flow, heat transfer, and solidification of steel in continuous casting mold with electromagnetic brake [J]. J. Mater. Process. Technol., 2003, 133: 322
[36] Yu H Q, Zhu M Y. Numerical simulation of the effects of electromagnetic brake and argon gas injection on the three-dimensional multiphase flow and heat transfer in slab continuous casting mold [J]. ISIJ Int., 2008, 48: 584
[37] Li B K, Tsukihashi F. Numerical estimation of the effect of the magnetic field application on the motion of inclusion in continuous casting of steel [J]. ISIJ Int., 2003, 43: 923
[38] Yu Z, Zhang Z Q, Ren Z M, et al. Study on the fluid flow in slab continuous casting mold with electromagnetic brake [J]. Acta Metall. Sin., 2010, 46: 1275
[38] 于 湛, 张振强, 任忠鸣等. 板坯电磁制动结晶器内流体流动的研究 [J]. 金属学报, 2010, 46: 1275
[39] Jia H, Zhang Z Q, Chang T X, et al. Influence of EMBR on flow field of molten steel in a continuous casting slab mold [J]. Chin. J. Process Eng., 2012, 12: 550
[39] 贾 皓, 张振强, 常同旭等. 板坯连铸中电磁制动方式对结晶器中钢液流场的影响 [J]. 过程工程学报, 2012, 12: 550
[40] Zhang Z Q. Physical simulation on liquid metal flow in mold of slab continuous casting with variors electromagnetic brakers [D]. Shanghai: Shanghai University, 2012
[40] 张振强. 几种电磁制动下板坯连铸结晶器内钢液流场物理模拟研究 [D]. 上海: 上海大学, 2012
[41] Zhou R, Fan Y F, Deng K, et al. Analysis of liquid metal flow with electromagnetic braking in continuous casting of slab by three-dimensional simulation [J]. J. Shanghai Univ. (Nat. Sci. Ed.), 2016, 22: 701
[41] 周 然, 樊亚夫, 邓 康等. 电磁制动下板坯连铸结晶器内金属流场三维模拟的基本流态与主流场分析 [J]. 上海大学学报(自然科学版), 2016, 22: 701
[42] Tzavaras A A, Brody H D. Electromagnetic stirring and continuous casting-Achievements, problems, and goals [J]. JOM, 1984, 36(3): 31
[43] Fujisaki K. In-mold electromagnetic stirring in continuous casting [J]. IEEE Trans. Ind. Appl., 2001, 37: 1098
[44] Trindade L B, Nadalon J E A, Contini A C, et al. Modeling of solidification in continuous casting round billet with mold electromagnetic stirring (M-EMS) [J]. Steel Res. Int., 2017, 88: 1600319
[45] Yin Y B, Zhang J M, Lei S W, et al. Numerical study on the capture of large inclusion in slab continuous casting with the effect of in-mold electromagnetic stirring [J]. ISIJ Int., 2017, 57: 2165
[46] Okazawa K, Toh T, Fukuda J, et al. Fluid flow in a continuous casting mold driven by linear induction motors [J]. ISIJ Int., 2001, 41: 851
[47] Toh T, Hasegawa H, Harada H. Evaluation of multiphase phenomena in mold pool under in-mold electromagnetic stirring in steel continuous casting [J]. ISIJ Int., 2001, 41: 1245
[48] Sun X H, Li B, Lu H B, et al. Steel/slag interface behavior under multifunction electromagnetic driving in a continuous casting slab mold [J]. Metals, 2019, 9: 983
[49] Jiang D Q, Wang R, Zhu L Q, et al. Thermal and numerical simulation of mould electromagnetic stirring of GCr15 bearing steel [J]. Mater. Sci. Technol., 2019, 35: 2173
[50] Saxena R C, Tandon J N, Talwar S P. Thermo-magnetic effects in liquids [J]. Nature, 1960, 185: 158
[51] Ren Z M, Li X, Sun Y H, et al. Influence of high magnetic field on peritectic transformation during solidification of Bi-Mn alloy [J]. Calphad, 2006, 30: 277
[52] Li C J, Yang H, Ren Z M, et al. On nucleation temperature of pure aluminum in magnetic fields [J]. Prog. Electromagn. Res. Lett., 2010, 15: 45
[53] Li C J, Ren Z M, Ren W L. Effect of magnetic fields on solid-melt phase transformation in pure bismuth [J]. Mater. Lett., 2009, 63: 269
[54] Xuan W D, Liu H, Li C J, et al. Effect of a high magnetic field on microstructures of Ni-based single crystal superalloy during seed melt-back [J]. Metall. Mater. Trans., 2016, 47B: 828
[55] Xuan W D, Ren Z M, Li C J. Experimental evidence of the effect of a high magnetic field on the stray grains formation in cross-section change region for Ni-based superalloy during directional solidification [J]. Metall. Mater. Trans., 2015, 46A: 1461
[56] Shercliff J A. Thermoelectric magnetohydrodynamics [J]. J. Fluid Mech., 1979, 91: 231
[57] Gel'Fgat Y M, Gorbunov L A. An additional source of forced convection in semiconductor melts during single-crystal growth in magnetic fields [J]. Soviet Phys. -Doklady, 1989, 34: 470
[58] Khine Y Y, Walker J S. Thermoelectric magnetohydrodynamic effects during Bridgman semiconductor crystal growth with a uniform axial magnetic field [J]. J. Cryst. Growth, 1998, 183: 150
[59] Moreau R, Laskar O, Tanaka M, et al. Thermoelectric magnetohydrodynamic effects on solidification of metallic alloys in the dendritic regime [J]. Mater. Sci. Eng., 1993, A173: 93
[60] Tewari S N, Shah R. Macrosegregation during dendritic arrayed growth of hypoeutectic Pb-Sn alloys: Influence of primary arm spacing and mushy zone length [J]. Metall. Mater. Trans., 1996, 27A: 1353
[61] Lehmann P, Moreau R, Camel D, et al. Monitoring solidification of an alloy by thermoelectric effects: Results of the MEPHISTO-USMP1 flight experiment [J]. J. Cryst. Growth, 1998, 187: 527
[62] Lehmann P, Moreau R, Camel D, et al. Modification of interdendritic convection in directional solidification by a uniform magnetic field [J]. Acta Mater., 1998, 46: 4067
[63] Li X, Du D F, Gagnoud A, et al. Effect of multi-scale thermoelectric magnetic convection on solidification microstructure in directionally solidified Al-Si alloys under a transverse magnetic field [J]. Metall. Mater. Trans., 2014, 45A: 5584
[64] Li X, Gagnoud A, Ren Z M, et al. Investigation of thermoelectric magnetic convection and its effect on solidification structure during directional solidification under a low axial magnetic field [J]. Acta Mater., 2009, 57: 2180
[65] Li X, Gagnoud A, Ren Z M, et al. Effect of strong magnetic field on solid solubility and microsegregation during directional solidification of Al-Cu alloy [J]. J. Mater. Res., 2013, 28: 2810
[66] Li X, Fautrelle Y, Ren Z M. Influence of thermoelectric effects on the solid-liquid interface shape and cellular morphology in the mushy zone during the directional solidification of Al-Cu alloys under a magnetic field [J]. Acta Mater., 2007, 55: 3803
[67] Mangelinck-No?l N, Nguyen-Thi H, Reinhart G, et al. In situ analysis of equiaxed growth of aluminium-nickel alloys by X-ray radiography at ESRF [J]. J. Phys., 2005, 38D: 28
[68] Liu D R, Mangelinck-No?l N, Gandin C A, et al. Structures in directionally solidified Al-7wt.%Si alloys: Benchmark experiments under microgravity [J]. Acta Mater., 2014, 64: 253
[69] Spittle J A. Columnar to equiaxed grain transition in as solidified alloys [J]. Int. Mater. Rev., 2006, 51: 247
[70] Li X, Gagnoud A, Fautrelle Y, et al. Dendrite fragmentation and columnar-to-equiaxed transition during directional solidification at lower growth speed under a strong magnetic field [J]. Acta Mater., 2012, 60: 3321
[71] Li X, Gagnoud A, Fautrelle Y, et al. Effect of a transverse magnetic field on solidification structures in unmodified and Sr-modified Al-7wtpctSi alloys during directional solidification [J]. Metall. Mater. Trans., 2016, 47A: 1198
[72] Wang J. Study on influence of interaction between thermoelectric currens and magnetic field during directional solidification of binary alloy [D]. Shanghai: Shanghai University, 2014
[72] 王 江. 二元合金定向凝固中内生热电流与外加磁场交互作用的研究 [D]. 上海: 上海大学, 2014
[73] Wang J, Fautrelle Y, Ren Z M, et al. Thermoelectric magnetic force acting on the solid during directional solidification under a static magnetic field [J]. Appl. Phys. Lett., 2012, 101: 251904
[74] Hou Y, Ren Z M, Wang J, et al. Effect of longitudinal static magnetic field on the columnar to equiaxed transition in directionally solidified GCr15 bearing steel [J]. Acta Metall. Sin., 2018, 54: 801
[74] 侯 渊, 任忠鸣, 王 江等. 纵向静磁场对定向凝固GCr15轴承钢柱状晶向等轴晶转变的影响 [J]. 金属学报, 2018, 54: 801
[75] Hou Y, Ren Z M, Zhang Z Q, et al. Columnar to equiaxed transition during directionally solidifying GCr18Mo steel affected by thermoelectric magnetic force under an axial static magnetic field [J]. ISIJ Int., 2019, 59: 60
[76] Hou Y, Shuai S S, Dong Y H, et al. Effect of thermoelectric magnetic convection on shrinkage porosity at the final stage of solidification of GCr18Mo steel under axial static magnetic field [J]. Metall. Mater. Trans., 2019, 50B: 881
[77] Sadovskii V D, Rodigin N M, Smirnov L V. The question of the influence of magnetic field on martensitic transformation in steel [J]. Phys. Met. Metall., 1961, 12: 131
[78] Satyanarayan K R, Eliasz W, Miodownik A P. The effect of a magnetic field on the martensite transformation in steels [J]. Acta Metall., 1968, 16: 877
[79] Joo H D, Kim S U, Shin N S, et al. An effect of high magnetic field on phase transformation in Fe-C system [J]. Mater. Lett., 2000, 43: 225
[80] Youdelis W V, Colton D R, Cahoon J. On the theory of diffusion in a magnetic field [J]. Can. J. Phys., 1964, 42: 2217
[81] Yuan Z J, Ren Z M, Li C J, et al. Effect of high magnetic field on diffusion behavior of aluminum in Ni-Al alloy [J]. Mater. Lett., 2013, 108: 340
[82] Li C J, Yuan Z J, Guo R, et al. Reaction diffusion in Ni-Al diffusion couples in steady magnetic fields [J]. J. Alloys Compd., 2015, 641: 7
[83] Li C J, He S Y, Fan Y F, et al. Enhanced diffusivity in Ni-Al system by alternating magnetic field [J]. Appl. Phys. Lett., 2017, 110: 074102
[84] Li C J, He S Y, Engelhardt H, et al. Alternating-magnetic-field induced enhancement of diffusivity in Ni-Cr alloys [J]. Sci Rep, 2017, 7: 18085
[85] Maruta K I, Shimotomai M. Alignment of two-phase structures in Fe-C alloys by application of magnetic field [J]. Mater. Trans. JIM, 2000, 41: 902
[86] Zhang Y D, Gey N, He C S, et al. High temperature tempering behaviors in a structural steel under high magnetic field [J]. Acta Mater., 2004, 52: 3467
[87] Zhang Y D, Zhao X, Bozzolo N, et al. Low temperature tempering of a medium carbon steel in high magnetic field [J]. ISIJ Int., 2005, 45: 913
[88] He C S, Zhang Y D, Zhao X, et al. Effects of a high magnetic field on microstructure and texture evolution in a cold-rolled interstitial-free (IF) steel sheet during annealing [J]. Adv. Eng. Mater., 2003, 5: 579
[89] Zhang Y D, Esling C, Muller J, et al. Magnetic-field-induced grain elongation in a medium carbon steel during its austenitic decomposition [J]. Appl. Phys. Lett., 2005, 87: 212504
[90] Li C J, Seyring M, Li X, et al. Effect of heat treatment combined with an alternating magnetic field on microstructure and mechanical properties of a Ni-based superalloy [J]. Metall. Mater. Trans., 2019, 50A: 1837
[91] Ren W L, Ren Z M, Fang S, et al. Effect of high-magnetic-field ageing treatment on the microstructure and hardness of DZ417G superalloy [J]. J. Iron Steel Res., 2011, 23(Suppl.2): 419
[91] 任维丽, 任忠明, 房 双等. 强磁场下时效热处理对高温合金DZ417G 组织和硬度的影响 [J]. 钢铁研究学报, 2011, 23(增刊2): 419
[92] Li C J, Yuan Z J, Fan Y F, et al. Microstructure and mechanical properties of a Ni-based superalloy after heat treatment in a steady magnetic field [J]. J. Mater. Process. Technol., 2017, 246: 176
[93] Ren X, Chen G Q, Zhou W L, et al. Effect of a high magnetic field on the shape of the γ' precipitates in cast nickel-based superalloy K52 [J]. J. Mater. Process. Technol., 2009, 25: 379
[94] Molodov D A, Gottstein G, Heringhaus F, et al. Motion of planar grain boundaries in bismuthbicrystals driven by a magnetic field [J]. Scr. Mater., 1997, 37: 1207
[95] Sheikh-ali A D, Molodov D A, Garmestani H. Migration and reorientation of grain boundaries in Zn bicrystals during annealing in a high magnetic field [J]. Scr. Mater., 2003, 48: 483
[96] Zhang Y D, Vincent G, Dewobroto N, et al. The effects of thermal processing in a magnetic field on grain boundary characters of ferrite in a medium carbon steel [J]. J. Mater. Sci., 2005, 40: 903
[97] Liu X T, Cui J Z, Wang E G, et al. Influence of a low-frequency electromagnetic field on precipitation behavior of a high strength aluminum alloy [J]. Mater. Sci. Eng., 2005, A402: 1
[98] Li C X, Yu Y D. The effect of solution heat treatments on the microstructure and hardness of ZK60 magnesium alloys prepared under low-frequency alternating magnetic fields [J]. Mater. Sci. Eng., 2013, A559: 22
[99] Xuan W D, Du L F, Han Y, et al. Investigation on microstructure and creep properties of nickel based single crystal superalloys PWA1483 during heat treatment under an alternating magnetic field [J]. Mater. Sci. Eng., 2019, A762: 138087
[100] Oliker V E, Gridasova T Y, Timofeeva I I, et al. Effect of magnetic treatment on the microstructure and abrasive resistance of WC-Co detonation-sprayed coatings [J]. Powder Metall. Met. Ceram., 2012, 51: 345
[101] Oliker V, Podrezov Y N, Yarmatov I, et al. Effect of magnetic treatment on the microstructure and strength of WC-Co detonation-sprayed coatings [J]. Powder Metall. Met. Ceram., 2012, 51: 485
[102] Liu Y Z, Zhan L H, Ma Q Q, et al. Effects of alternating magnetic field aged on microstructure and mechanical properties of AA2219 aluminum alloy [J]. J. Alloys Compd., 2015, 647: 644
[1] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[2] 马德新, 赵运兴, 徐维台, 王富. 重力对高温合金定向凝固组织的影响[J]. 金属学报, 2023, 59(9): 1279-1290.
[3] 刘继浩, 周健, 武会宾, 马党参, 徐辉霞, 马志俊. 喷射成形M3高速钢偏析成因及凝固机理[J]. 金属学报, 2023, 59(5): 599-610.
[4] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[5] 苏震奇, 张丛江, 袁笑坦, 胡兴金, 芦可可, 任维丽, 丁彪, 郑天祥, 沈喆, 钟云波, 王晖, 王秋良. 纵向静磁场下单晶高温合金定向凝固籽晶回熔界面杂晶的形成与演化[J]. 金属学报, 2023, 59(12): 1568-1580.
[6] 彭治强, 柳前, 郭东伟, 曾子航, 曹江海, 侯自兵. 基于大数据挖掘的连铸结晶器传热独立变化规律[J]. 金属学报, 2023, 59(10): 1389-1400.
[7] 梁琛, 王小娟, 王海鹏. 快速凝固Ti-Al-Nb合金B2相形成机制与显微力学性能[J]. 金属学报, 2022, 58(9): 1169-1178.
[8] 李闪闪, 陈云, 巩桐兆, 陈星秋, 傅排先, 李殿中. 冷速对高碳铬轴承钢液析碳化物凝固析出机制的影响[J]. 金属学报, 2022, 58(8): 1024-1034.
[9] 刘仁慈, 王鹏, 曹如心, 倪明杰, 刘冬, 崔玉友, 杨锐. 700℃热暴露对 β 凝固 γ-TiAl合金表面组织及形貌的影响[J]. 金属学报, 2022, 58(8): 1003-1012.
[10] 李彦强, 赵九洲, 江鸿翔, 何杰. Pb-Al合金定向凝固组织形成过程[J]. 金属学报, 2022, 58(8): 1072-1082.
[11] 郭东伟, 郭坤辉, 张福利, 张飞, 曹江海, 侯自兵. 基于二次枝晶间距变化特征的连铸方坯CET位置判断新方法[J]. 金属学报, 2022, 58(6): 827-836.
[12] 李民, 李昊泽, 王继杰, 马颖澈, 刘奎. 稀土Ce对薄带连铸无取向6.5%Si钢组织、高温拉伸性能和断裂模式的影响[J]. 金属学报, 2022, 58(5): 637-648.
[13] 丁宗业, 胡侨丹, 卢温泉, 李建国. 基于同步辐射X射线成像液/固复层界面氢气泡的形核、生长演变与运动行为的原位研究[J]. 金属学报, 2022, 58(4): 567-580.
[14] 吴国华, 童鑫, 蒋锐, 丁文江. 铸造Mg-RE合金晶粒细化行为研究现状与展望[J]. 金属学报, 2022, 58(4): 385-399.
[15] 张雷, 施韬, 黄火根, 张培, 张鹏国, 吴敏, 法涛. 铀基非晶复合材料的相分离与凝固序列研究[J]. 金属学报, 2022, 58(2): 225-230.