Please wait a minute...
金属学报  2020, Vol. 56 Issue (2): 182-192    DOI: 10.11900/0412.1961.2019.00205
  研究论文 本期目录 | 过刊浏览 |
热处理工艺对GH4720Li合金细晶铸锭组织与热加工性能的影响
王涛,万志鹏(),李钊,李佩桓,李鑫旭,韦康,张勇
中国航发北京航空材料研究院先进高温结构材料重点实验室 北京 100095
Effect of Heat Treatment Parameters on Microstructure and Hot Workability of As-Cast Fine Grain Ingot of GH4720Li Alloy
WANG Tao,WAN Zhipeng(),LI Zhao,LI Peihuan,LI Xinxu,WEI Kang,ZHANG Yong
Science and Technology on Advanced High Temperature Structural Materials Laboratory, AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China
引用本文:

王涛,万志鹏,李钊,李佩桓,李鑫旭,韦康,张勇. 热处理工艺对GH4720Li合金细晶铸锭组织与热加工性能的影响[J]. 金属学报, 2020, 56(2): 182-192.
Tao WANG, Zhipeng WAN, Zhao LI, Peihuan LI, Xinxu LI, Kang WEI, Yong ZHANG. Effect of Heat Treatment Parameters on Microstructure and Hot Workability of As-Cast Fine Grain Ingot of GH4720Li Alloy[J]. Acta Metall Sin, 2020, 56(2): 182-192.

全文: PDF(23934 KB)   HTML
摘要: 

通过对GH4720Li合金细晶铸锭在不同均匀化热处理温度下组织演变规律与热加工性能的研究,确定了合金的最佳均匀化热处理工艺参数。依据不同参数下的一级与二级均匀化热处理工艺实验,深入研究了细晶铸锭的偏析系数以及共晶相含量与均匀化热处理工艺之间的内在联系,并对不同热处理工艺参数下合金的热加工性能进行了评价。实验结果表明:均匀化热处理温度的升高或保温时间的延长能够有效降低合金中共晶相的含量,改善合金中元素的偏析情况。此外,合理的二级均匀化热处理工艺能够降低均匀化温度与保温时间,从而提高均匀化热处理效率。经二级均匀化缓冷(1140 ℃保温12 h+1170 ℃保温10 h,以0.2 ℃/min冷却至1010 ℃后,出炉空冷)热处理所获得试样的高温塑性显著优于一级均匀化处理和二级均匀化空冷处理的试样,当热变形参数为1120 ℃、1 s-1时,其最大压下量为50%,显著优于其它热处理工艺参数。合金在1140和1160 ℃热变形时动态再结晶形核方式主要以非连续动态再结晶为主,原始晶粒边界为动态再结晶晶粒提供形核位置,且M(C, N)型强化相能够促进合金动态再结晶行为的发生。本研究中GH4720Li合金细晶铸锭的最佳均匀化热处理工艺为:1140 ℃保温12 h+1170 ℃保温10 h,以0.2 ℃/min冷却至1010 ℃后,出炉空冷。

关键词 GH4720Li合金细晶铸锭均匀化热处理组织演变热加工性能    
Abstract

GH4720Li was Ni-Cr-Co base precipitation strengthened superalloy and widely used for high performance applications such as disks and blades of either aircraft engines or land-based gas turbines attributing to its excellent properties including resistance to creep and fatigue, together with corrosion, fracture and microstructural stability for the intended applications. Compared with the double-melting process (vacuum induction melting (VIM)+electroslag remelting (ESR) or VIM+vacuum arc remelting (VAR), a triple-melting process (VIM+ESR+VAR) can eliminate the segregation coefficient of the alloying elements and reduce the content of impurity elements, while the ingot fabricated by the triple-melting process also exhibited lots of shortcomings, such as the coarse grains, dendritic structure, microstructure defects and high forging temperature. The as-cast fine grain ingot prepared by grain refining casting process can eliminate the microscopic shrinkage, reduce the differences among three crystalline regions and improve the hot workability as a result. However, it was hardly to avoid the microstructure defects by simply improving the casting process attributing to its large number of alloying elements. Therefore, the homogenization treatment was always performed on the superalloy ingot. In this work, the optimized homogenization parameter was identified according to the investigation on the microstructure evolution under various homogenization treatment conditions and hot workability of as-cast fine grain ingot after homogenization treatment. The relationships of one-stage as well as two-stage homogenization treatment parameters and segregation coefficient as well as volume fraction of eutectic phase were investigated indepth. The hot workability of the homogenized samples under various conditions was also analyzed with the help of hot compression tests. Experimental results revealed that the increased homogenization treatment temperature and extended holding time were able to decrease the volume fraction of eutectic phase and segregation coefficient of the alloying element significantly. Hot compression tests by the Gleeble 3800 dynamic thermal-mechanical testing machine indicated that the samples suffered two-stage homogenization treatment followed by the slowly cooling rate (1140 ℃, 12 h+1170 ℃, 10 h, 0.2 ℃/min furnace cooling to 1010 ℃, and then air cooling) exhibited better hot workability (the maximum reduction rate of 50% deformed at 1120 ℃, 1 s-1). Discontinuous dynamic recrystallization was identified as the mainly nucleation mechanism of the alloy, and the recrystallized grains preferred to nucleate at the boundaries of the original grains according to the microstructure observation of hot compressed samples. In additions, the M(C, N) type precipitates were able to promote the occurrence of dynamic recrystallization behavior. Homogenization treatment experiments and microstructure observation suggested that the optimized treatment parameters of the as-cast fine grain ingot was 1140 ℃, 12 h+1170 ℃, 10 h, 0.2 ℃/min furnace cooling to 1010 ℃, and then by air cooling.

Key wordsas-cast fine grain ingot of GH4720Li alloy    homogenization heat treatment    microstructure evolution    hot workability
收稿日期: 2019-06-21     
ZTFLH:  TG146.1  
作者简介: 王 涛,男,1982年生,高级工程师,博士
No.One stage heat treatment
OSHT 11140 ℃, 1 h, WC
OSHT 21140 ℃, 8 h, WC
OSHT 31140 ℃, 16 h, WC
OSHT 41160 ℃, 1 h, WC
OSHT 51160 ℃, 14 h, WC
OSHT 61160 ℃, 24 h, AC
OSHT 71160 ℃, 14 h, 0.2 ℃·min-1 FC to 1010 ℃, and then AC
表1  GH4720Li合金一级均匀化热处理实验方案
No.Two stage heat treatment
TSHT 11130 ℃, 8 h+1160 ℃, 4 h, WC
TSHT 21130 ℃, 16 h+1160 ℃, 8 h, WC
TSHT 31160 ℃, 8 h+1180 ℃, 2 h, WC
TSHT 41140 ℃, 12 h+1170 ℃, 10 h, AC
TSHT 51140 ℃, 12 h+1170 ℃, 10 h, 0.2 ℃·min-1 FC to 1010 ℃, and then AC
表2  GH4720Li合金二级均匀化热处理实验方案
图1  GH4720Li合金细晶铸锭低倍组织形貌
图2  GH4720Li合金细晶铸锭R/2处显微组织

Element

Mass fraction / %

Segregation coefficient (K)

InterdendriticDendrite core
Al2.472.181.133
Ti12.134.672.597
Cr8.4016.84-2.005
Co11.5914.95-1.290
Ni63.1356.431.119
Mo1.833.06-1.672
W0.461.86-4.043
表3  初始GH4720Li细晶铸锭R/2处枝晶干与枝晶间元素偏析情况分析
图3  不同热处理温度保温1 h条件下GH4720Li合金细晶铸锭的微观组织
图4  不同热处理温度保温1 h条件下GH4720Li合金中共晶相体积分数
图5  GH4720Li合金细晶铸锭不同一级均匀化热处理工艺参数下的微观组织
图6  不同一级均匀化热处理工艺参数下GH4720Li合金细晶铸锭中的共晶相体积分数
图7  GH4720Li合金细晶铸锭不同均匀化参数下各元素的偏析系数
图8  GH4720Li合金细晶铸锭不同二阶段均匀化热处理工艺参数下的微观组织
图9  不同二级均匀化热处理工艺参数下GH4720Li合金细晶铸锭中共晶相体积分数

No.

1120 ℃1140 ℃1160 ℃
0.01 s-10.1 s-11 s-10.01 s-10.1 s-11 s-10.01 s-10.1 s-11 s-1
ACFGI303020303020303020
OSHT 6303030504040504040
TSHT 4404040505040505040
TSHT 5404050505060505060
表4  均匀化热处理后GH4720Li合金细晶铸锭热压缩过程临界开裂压下量 (%)
图10  均匀化热处理参数为TSHT 5条件下GH4720Li合金细晶铸锭在不同工艺参数下的真应力-应变曲线
图11  均匀化热处理参数为TSHT 5条件下GH4720Li合金细晶铸锭不同热变形参数下的微观组织
[1] Gopinath K, Gogia A K, Kamat S V, et al. Dynamic strain ageing in Ni-base superalloy 720Li [J]. Acta Mater., 2009, 57: 1243
[2] Pang H T, Reed P A S. Microstructure effects on high temperature fatigue crack initiation and short crack growth in turbine disc nickel-base superalloy Udimet 720Li [J]. Mater. Sci. Eng., 2007, A448: 67
[3] Wang T, Wan Z P, Sun Y, et al. Dynamic softening behavior and microstructure evolution of nickel base superalloy [J]. Acta Metall. Sin., 2018, 54: 83
[3] (王 涛, 万志鹏, 孙 宇等. 镍基变形高温合金动态软化行为与组织演变规律研究 [J]. 金属学报, 2018, 54: 83)
[4] Gopinath K, Gogia A K, Kamat S V, et al. Low cycle fatigue behaviour of a low interstitial Ni-base superalloy [J]. Acta Mater., 2009, 57: 3450
[5] Na Y S, Park N K, Reed R C. Sigma morphology and precipitation mechanism in Udimet 720Li [J]. Scr. Mater., 2000, 43: 585
[6] Jackson M P, Reed R C. Heat treatment of UDIMET 720Li: The effect of microstructure on properties [J]. Mater. Sci. Eng., 1999, A259: 85
[7] Yu Q Y, Yao Z H, Dong J X. Deformation and recrystallization behavior of a coarse-grain, nickel-base superalloy Udimet720Li ingot material [J]. Mater. Charact., 2015, 107: 398
[8] Wan Z P, Wang T, Sun Y, et al. Dynamic softening mechanisms of GH4720Li alloy during hot deformation [J]. Acta Metall. Sin., 2019, 55: 213
[8] (万志鹏, 王 涛, 孙 宇等. GH4720Li合金热变形过程动态软化机制 [J]. 金属学报, 2019, 55: 213)
[9] Semiatin S L, Kramb R C, Turner R E, et al. Analysis of the homogenization of a nickel-base superalloy [J]. Scr. Mater., 2004, 51: 491
[10] Miao Z J, Shan A D, Wu Y B, et al. Quantitative analysis of homogenization treatment of INCONEL718 superalloy [J]. Trans. Nonferrous Met. Soc. China, 2011, 21: 1009
[11] Sohrabi M J, Mirzadeh H, Rafiei M. Solidification behavior and Laves phase dissolution during homogenization heat treatment of Inconel 718 superalloy [J]. Vacuum, 2018, 154: 235
[12] Hosseini S A, Madar K Z, Abbasi S M. Effect of homogenization heat treatments on the cast structure and tensile properties of nickel-base superalloy ATI 718Plus in the presence of boron and zirconium additions [J]. Mater. Sci. Eng., 2017, A689: 103
[13] Yang J X, Sun Y, Jin T, et al. Microstructure and mechanical properties of a Ni-based superalloy with refined grains [J]. Acta Metall. Sin., 2014, 50: 839
[13] (杨金侠, 孙 元, 金 涛等. 一种细晶铸造镍基高温合金的组织与力学性能 [J]. 金属学报, 2014, 50: 839)
[14] Zhang Y, Li P H, Jia C L, et al. Research progress of melting purification techniques and equipment for cast & wrought superalloy [J]. Mater. Rev., 2018, 32: 1496
[14] (张 勇, 李佩桓, 贾崇林等. 变形高温合金纯净熔炼设备及工艺研究进展 [J]. 材料导报, 2018, 32: 1496)
[15] Gao Z T, Guo W, Zhang C W, et al. Development of fine-grained structure in Ni-Cr-W based superalloy and its effect on the mechanical properties [J]. Mater. Sci. Eng., 2017, A682: 156
[16] Ma Y, Sun J H, Xie X S, et al. An investigation on fine-grain formation and structural character in cast IN718 superalloy [J]. J. Mater. Process. Technol., 2003, 137: 35
[17] Men H, Jiang B, Fan Z. Mechanisms of grain refinement by intensive shearing of AZ91 alloy melt [J]. Acta Mater., 2010, 58: 6526
[18] Chang L T, Jin H, Sun W R. Solidification behavior of Ni-base superalloy Udimet 720Li [J]. J. Alloys Compd., 2015, 653: 266
[19] Gong L, Chen B, Yang Y Q, et al. Effect of N content on microsegregation, microstructure and mechanical property of cast Ni-base superalloy K417G [J]. Mater. Sci. Eng., 2017, A701: 111
[20] Qin L, Pei Y L, Li S S, et al. Effect of thermal stability of γ' phase on the recrystallization behaviors of Ni-based single crystal superalloys [J]. Mater. Des., 2017, 130: 69
[21] Zhang H, Liu Y, Chen X, et al. Microstructural homogenization and high-temperature cyclic oxidation behavior of a Ni-based superalloy with high-Cr content [J]. J. Alloys Compd., 2017, 727: 410
[22] Pan X L, Wang B, Sun W R, et al. Effect of homogenization treatment on the hot deformation of GH742 alloy [J]. Acta Metall. Sin., 2012, 48: 1403
[22] (潘晓林, 汪 波, 孙文儒等. 均匀化处理对GH742合金热变形行为的影响 [J]. 金属学报, 2012, 48: 1403)
[23] Dong J X, Li L H, Li H Y, et al. Effect of extent of homogenization on the hot deformation recrystallization of superalloy ingot in cogging process [J]. Acta Metall. Sin., 2015, 51: 1207
[23] (董建新, 李林翰, 李浩宇等. 高温合金铸锭均匀化程度对开坯热变形的再结晶影响 [J]. 金属学报, 2015, 51: 1207)
[24] Hegde S R, Kearsey R M, Beddoes J C. Designing homogenization-solution heat treatments for single crystal superalloys [J]. Mater. Sci. Eng., 2010, A527: 5528
[25] Du J H, Qu J L, Deng Q, et al. As-cast microstructure and homogenization process of alloy GH720Li [J]. J. Iron Steel Res., 2005, 17(3): 60
[25] (杜金辉, 曲敬龙, 邓 群等. GH720Li合金的铸态组织和均匀化工艺 [J]. 钢铁研究学报, 2005, 17(3): 60)
[26] Liu F F, Chen J Y, Dong J X, et al. The hot deformation behaviors of coarse, fine and mixed grain for Udimet 720Li superalloy [J]. Mater. Sci. Eng., 2016, A651: 102
[27] Cao L, Zhou Y Z, Jin T, et al. Effects of Re on surface eutectic formation for Ni-base single crystal superalloys during directional solidification [J]. J. Mater. Sci. Technol., 2017, 33: 1308
[28] Mishin Y, Herzig C. Diffusion in the Ti-Al system [J]. Acta Mater., 2000, 48: 589
[29] Liu M C, Sheng G M, He H J, et al. Microstructural evolution and mechanical properties of TLP bonded joints of Mar-M247 superalloys with Ni-Cr-Co-W-Ta-B interlayer [J]. J. Mater. Process. Technol., 2017, 246: 245
[30] Neumeier S, Rehman H U, Neuner J, et al. Diffusion of solutes in fcc cobalt investigated by diffusion couples and first principles kinetic Monte Carlo [J]. Acta Mater., 2016, 106: 304
[31] Ruan J J, Ueshima N, Oikawa K. Phase transformations and grain growth behaviors in superalloy 718 [J]. J. Alloys Compd., 2018, 737: 83
[32] Yang C, Mo D G, Lu H Z, et al. Reaction diffusion rate coefficient derivation by isothermal heat treatment in spark plasma sintering system [J]. Scr. Mater., 2017, 134: 91
[33] Egbewande A T, Chukwukaeme C, Ojo O A. Joining of superalloy Inconel 600 by diffusion induced isothermal solidification of a liquated insert metal [J]. Mater. Charact., 2008, 59: 1051
[34] Viswanathan G B, Sarosi P M, Henry M F, et al. Investigation of creep deformation mechanisms at intermediate temperatures in René 88 DT [J]. Acta Mater., 2005, 53: 3041
[35] Sinharoy S, Virro-Nic P, Milligan W W. Deformation and strength behavior of two nickel-base turbine disk alloys at 650 ℃ [J]. Metall. Mater. Trans., 2001, 32A: 2021
[36] Henry M F, Yoo Y S, Yoon D Y, et al. The dendritic growth of γ' precipitates and grain [J]. Metall. Trans., 1993, 24A: 1733
[37] Fahrmann M, Suzuki A. Effect of cooling rate on gleeble hot ductility of Udimet alloy 720 billet [A]. Superalloys 2008 [C]. Warrendale: TMS, 2008: 311
[38] Liu G W, Han Y, Shi Z Q, et al. Hot deformation and optimization of process parameters of an as-cast 6Mo superaustenitic stainless steel: A study with processing map [J]. Mater. Des., 2014, 53: 662
[39] Kumar S S S, Raghu T, Bhattacharjee P P, et al. Work hardening characteristics and microstructural evolution during hot deformation of a nickel superalloy at moderate strain rates [J]. J. Alloys Compd., 2017, 709: 394
[40] Kumar S S S, Raghu T, Bhattacharjee P P, et al. Strain rate dependent microstructural evolution during hot deformation of a hot isostatically processed nickel base superalloy [J]. J. Alloys Compd., 2016, 681: 28
[41] Han Y, Liu G W, Zou D N, et al. Deformation behavior and microstructural evolution of as-cast 904L austenitic stainless steel during hot compression [J]. Mater. Sci. Eng., 2013, A565: 342
[1] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[3] 王法, 江河, 董建新. 高合金化GH4151合金复杂析出相演变行为[J]. 金属学报, 2023, 59(6): 787-796.
[4] 方远志, 戴国庆, 郭艳华, 孙中刚, 刘红兵, 袁秦峰. 激光摆动对激光熔化沉积钛合金微观组织及力学性能的影响[J]. 金属学报, 2023, 59(1): 136-146.
[5] 李钊, 江河, 王涛, 付书红, 张勇. GH2909低膨胀高温合金热处理中的组织演变行为[J]. 金属学报, 2022, 58(9): 1179-1188.
[6] 梁琛, 王小娟, 王海鹏. 快速凝固Ti-Al-Nb合金B2相形成机制与显微力学性能[J]. 金属学报, 2022, 58(9): 1169-1178.
[7] 徐静辉, 李龙飞, 刘心刚, 李辉, 冯强. 热力耦合对一种第四代镍基单晶高温合金1100℃蠕变组织演变的影响[J]. 金属学报, 2021, 57(2): 205-214.
[8] 刘超, 姚志浩, 郭婧, 彭子超, 江河, 董建新. 粉末高温合金FGH4720Li在近服役温度下的组织演变规律[J]. 金属学报, 2021, 57(12): 1549-1558.
[9] 李娟, 赵宏龙, 周念, 张英哲, 秦庆东, 苏向东. CoCrFeNiCu高熵合金与304不锈钢真空扩散焊[J]. 金属学报, 2021, 57(12): 1567-1578.
[10] 刘晨曦, 毛春亮, 崔雷, 周晓胜, 余黎明, 刘永长. 低活化铁素体/马氏体钢组织调控及其固相连接研究进展[J]. 金属学报, 2021, 57(11): 1521-1538.
[11] 吴贇, 刘雅辉, 康茂东, 高海燕, 王俊, 孙宝德. K4169合金循环加载过程中的微观组织演变[J]. 金属学报, 2020, 56(9): 1185-1194.
[12] 吴静,刘永长,李冲,伍宇婷,夏兴川,李会军. 高Fe、Cr含量多相Ni3Al基高温合金组织与性能研究进展[J]. 金属学报, 2020, 56(1): 21-35.
[13] 江河,董建新,张麦仓,姚志浩,杨静. 服役条件下镍基高温合金应力松弛微观机制[J]. 金属学报, 2019, 55(9): 1211-1220.
[14] 陈占兴,丁宏升,陈瑞润,郭景杰,傅恒志. 脉冲电流作用下TiAl合金凝固组织演变及形成机理[J]. 金属学报, 2019, 55(5): 611-618.
[15] 毛轶哲, 李建国, 封蕾. 573 K高温时效处理的Al-10Mg合金中粗大β(Al3Mg2)相对热压缩组织演化的影响及机理[J]. 金属学报, 2018, 54(10): 1451-1460.