Please wait a minute...
金属学报  2019, Vol. 55 Issue (12): 1551-1560    DOI: 10.11900/0412.1961.2019.00170
  研究论文 本期目录 | 过刊浏览 |
Sn对锆合金在280 LiOH水溶液中初期腐蚀行为的影响
姚美意1,2(),林雨晨1,2,侯可可1,2,梁雪1,2,胡鹏飞1,2,张金龙1,2,周邦新1,2
1. 上海大学材料研究所 上海 200072
2. 上海大学微结构重点实验室 上海 200444
Effect of Sn on Initial Corrosion Behavior of Zirconium Alloy in 280 LiOH Aqueous Solution
YAO Meiyi1,2(),LIN Yuchen1,2,HOU Keke1,2,LIANG Xue1,2,HU Pengfei1,2,ZHANG Jinlong1,2,ZHOU Bangxin1,2
1. Institute of Materials, Shanghai University, Shanghai 200072, China
2. Laboratory for Microstructures, Shanghai University, Shanghai 200444, China
引用本文:

姚美意, 林雨晨, 侯可可, 梁雪, 胡鹏飞, 张金龙, 周邦新. Sn对锆合金在280 LiOH水溶液中初期腐蚀行为的影响[J]. 金属学报, 2019, 55(12): 1551-1560.
YAO Meiyi, LIN Yuchen, HOU Keke, LIANG Xue, HU Pengfei, ZHANG Jinlong, ZHOU Bangxin. Effect of Sn on Initial Corrosion Behavior of Zirconium Alloy in 280 LiOH Aqueous Solution[J]. Acta Metall Sin, 2019, 55(12): 1551-1560.

全文: PDF(23991 KB)   HTML
摘要: 

为了研究Sn对锆合金初期腐蚀行为的影响,将Zr-0.75Sn-0.35Fe-0.15Cr和Zr-1.5Sn-0.35Fe-0.15Cr (质量分数,%) 2种锆合金大晶粒TEM薄样品放入280 ℃、6.3 MPa、0.01 mol/L LiOH水溶液中短时腐蚀。为了保证在相同的厚度和晶粒取向下观察分析晶体结构演化过程,先采用聚焦离子束(FIB)切出横截面薄区样品,再采用TEM观察腐蚀样品表面和横截面的显微组织,利用离孔周围不同距离处样品厚度差别造成的氧含量差别,研究了Sn对锆合金初期氧化行为、早期氧化膜的形核与长大过程的影响。结果表明,从开始氧化至ZrO2形成前,α-Zr的晶格点阵会随着样品中氧含量增加而不断演变;在取向为[0001]的晶粒上氧化层的演化过程经历了亚氧化物层、晶格畸变层和m-ZrO2层等过程。与Zr-0.75Sn-0.35Fe-0.15Cr 合金相比,Zr-1.5Sn-0.35Fe-0.15Cr合金氧化膜横截面薄区中氧化层更厚,晶格条纹畸变层占比更低而m-ZrO2层占比更高,这说明提高Sn含量会促进锆合金的初期腐蚀过程。

关键词 锆合金初期腐蚀晶体结构    
Abstract

Zirconium alloys are widely used as fuel cladding and core structure materials for water-cooled nuclear reactors due to its low thermal neutron absorption cross section, good corrosion resistance, moderate mechanical properties and good compatibility with UO2. Corrosion is one of the main factors affecting the service life of zirconium alloy cladding. The influence of initial corrosion behavior of zirconium alloys and the crystal structure of the oxide film formed at the early stage on the microstructural evolution of the oxide film at the later stage has gradually attracted people's attention. Sn is an important alloying element in zirconium alloys. In order to study the effect of Sn on the initial corrosion behavior of zirconium alloys, coarse-grain TEM thin samples of Zr-0.75Sn-0.35Fe-0.15Cr and Zr-1.5Sn-0.35Fe-0.15Cr (mass fraction, %) zirconium alloys were corroded in 280 ℃, 6.3 MPa and 0.01 mol/L LiOH aqueous solution for short period. In order to ensure the observation of the crystal structure evolution process under the same thickness and grain orientation, the cross-section thin section samples were cut by focused ion beam (FIB), and then the surface and cross-section microstructures of the corroded samples were observed by TEM. Based on the difference in oxygen content caused by the different thickness of the sample around the hole in TEM sample, the effect of Sn on the initial corrosion behavior of zirconium alloy was investigated, as well as the nucleation and growth process of early oxide film. Results showed that the lattice of α-Zr evolved with the increase of oxygen content in the sample from the beginning of oxidation to the formation of ZrO2. The evolution of the oxide layer on the grain oriented [0001] underwent sub-oxide layer, lattice distortion layer and m-ZrO2 layer. Compared with Zr-0.75Sn-0.35Fe-0.15Cr alloy, Zr-1.5Sn-0.35Fe-0.15Cr alloy had a thicker oxide layer in the thin section, a lower proportion of lattice distortion layer and a higher proportion of the m-ZrO2 layer. This illustrates that increasing the Sn content promotes the initial corrosion process of zirconium alloys.

Key wordszirconium alloy    initial corrosion    crystal structure
收稿日期: 2019-05-30     
ZTFLH:  TL341  
基金资助:国家自然科学基金项目(Nos.51871141);国家自然科学基金项目(51471102)
作者简介: 姚美意,女,1973年,研究员,博士
图1  1#合金(Zr-0.75Sn-0.35Fe-0.15Cr)大晶粒TEM薄样品在280 ℃、6.3 MPa、0.01 mol/L LiOH水溶液中短时腐蚀后的TEM像和SAED花样

Spectrum

Atomic fraction / %

Zr/O

ZrO
a82.5316.355.05
b81.1417.814.56
c74.6924.163.09
d66.5732.562.04
e55.6943.481.28
f45.7153.520.85
表1  图1a~f处的Zr、O含量及Zr/O原子比
图2  11#合金(Zr-1.5Sn-0.35Fe-0.15Cr)大晶粒TEM薄样品在280 ℃、6.3 MPa、0.01 mol/L LiOH水溶液中短时腐蚀后的TEM像和SAED花样

Spectrum

Atomic fraction / %

Zr/O

ZrO
a72.5625.782.81
b69.9528.582.45
c68.1930.252.25
d63.5734.781.83
e60.3338.041.59
f58.2140.211.45
表2  图2a~f处的Zr、O含量及Zr/O原子比
图3  1#合金大晶粒TEM薄样品在280 ℃、6.3 MPa、0.01 mol/L LiOH水溶液中短时腐蚀后横截面薄区的TEM像、HRTEM像(样品厚度约300 nm处)和FFT图
图4  1#合金大晶粒TEM薄样品在280 ℃、6.3 MPa、0.01 mol/L LiOH水溶液中短时腐蚀后横截面薄区的TEM像、HRTEM像(样品厚度约200 nm处)和FFT图
图5  11#合金大晶粒TEM薄样品在280 ℃、6.3 MPa、0.01 mol/L LiOH水溶液中短时腐蚀后横截面薄区的TEM像、HRTEM像(样品厚度约300 nm处)和FFT图
图6  11#合金大晶粒TEM薄样品在280 ℃、6.3 MPa、0.01 mol/L LiOH水溶液中短时腐蚀后横截面薄区的TEM像、HRTEM像(样品厚度约200 nm处)和FFT图

Alloy

Oxidation process

Oxide thickness / nm

Proportion / %
Sub-oxideZrO2Lattice distortion layerm-ZrO2
1#hcp-Zr3Om-ZrO2603030
11#hcp-Zr3Om-ZrO2802050
表3  280 ℃、6.3 MPa、0.01 mol/L LiOH 水溶液中短时腐蚀的TEM薄样品横截面薄区氧化过程、晶格畸变层占比、m-ZrO2占比和氧化层厚度的结果(其中氧化层厚度和各层比数据来自厚度300 nm处的结果)
图7  2种合金小晶粒样品和2种合金大晶粒样品在不同条件水溶液中的腐蚀增重曲线
[1] Yang W D. Reactor Materials Science [M]. 2nd Ed., Beijing: Atomic Energy Press, 2006: 260
[1] (杨文斗. 反应堆材料学 [M]. 第2版. 北京: 原子能出版社, 2006: 260)
[2] Liu J Z. Nuclear Structure Materials [M]. Beijing: Chemical Industry Press, 2007: 41
[2] (刘建章. 核结构材料 [M]. 北京: 化学工业出版社, 2007: 41)
[3] Chen H M, Ma C L, Bai X D. Corrosion and Protection of Nuclear Reactor Materials [M]. Beijing: Atomic Energy Press, 1984: 188
[3] (陈鹤鸣, 马春来, 白新德. 核反应堆材料腐蚀及其防护 [M]. 北京: 原子能出版社, 1984: 188)
[4] Harada M, Kimpara M, Abe K. Effect of alloying elements on uniform corrosion resistance of zirconium-based alloys in 360 ℃ water and 400 ℃ steam [A]. Zirconium in the Nuclear Industry: Ninth International Symposium [C]. Conshohocken, Philadelphia: American Society for Testing and Materials, 1991: 368
[5] Graham R A, Eucken C M. Controlled composition zircaloy-2 uniform corrosion resistance [A]. Zirconium in the Nuclear Industry: Ninth International Symposium [C]. Conshohocken, Philadelphia: American Society for Testing and Materials, 1991: 279
[6] Garde A M, Pati S R, Krammen M A, et al. Corrosion behavior of zircaloy-4 cladding with varying tin content in high-temperature pressurized water reactors [A]. Zirconium in the Nuclear Industry: Tenth International Symposium [C]. Conshohocken, Philadelphia: American Society for Testing and Materials, 1994: 760
[7] Eucken C M, Finden P T, Trapp-Pritsching S, et al. Influence of chemical composition on uniform corrosion of zirconium-base alloys in autoclave tests [A]. Zirconium in the Nuclear Industry: Eighth International Symposium [C]. Conshohocken, Philadelphia: American Society for Testing and Materials, 1989: 113
[8] Yueh H K, Kesterson R L, Comstock R J, et al. Improved ZIRLOTM cladding performance through chemistry and process modifications [A]. Zirconium in the Nuclear Industry: 14th International Symposium [C]. Conshohocken, Philadelphia: American Society for Testing and Materials, 2005: 330
[9] Zhou B X, Yao M Y, Li Z K, et al. Optimization of N18 zirconium alloy for fuel cladding of water reactors [J]. J. Mater. Sci. Technol., 2012, 28: 606
[10] Takeda K, Anada H. Mechanism of corrosion rate degradation due to tin [A]. Zirconium in the Nuclear Industry: Twelfth International Symposium [C]. Conshohocken, Philadelphia: American Society for Testing and Materials, 2000: 592
[11] Zhou B X, Li Q, Yao M Y, et al. Microstructure of oxide films formed on zircaloy-4 [J]. Corros. Prot., 2009, 30: 589
[11] (周邦新, 李 强, 姚美意等. Zr-4合金氧化膜的显微组织研究 [J]. 腐蚀与防护, 2009, 30: 589)
[12] Zhou B X, Li Q, Yao M Y, et al. Microstructure evolution of oxide films formed on zircaloy-4 during autoclave tests [J]. Nucl. Power Eng., 2005, 26: 364
[12] (周邦新, 李 强, 姚美意等. 锆-4合金在高压釜中腐蚀时氧化膜显微组织的演化 [J]. 核动力工程, 2005, 26: 364)
[13] Zhou B X, Li Q, Yao M Y, et al. Effect of water chemistry and composition on microstructural evolution of oxide on Zr alloys [J]. J. ASTM Int., 2008, 5(2): 101121
[14] Zhou B X, Li Q, Liu W Q, et al. The effects of water chemistry and composition on the microstructure evolution of oxide films on zirconium alloys during autoclave tests [J]. Rare Met. Mater. Eng., 2006, 35: 1009
[14] (周邦新, 李 强, 刘文庆等. 水化学及合金成分对锆合金腐蚀时氧化膜显微组织演化的影响 [J]. 稀有金属材料与工程, 2006, 35: 1009)
[15] Li S L, Yao M Y, Zhang X, et al. Effect of adding Cu on the corrosion resistance of M5 alloy in super-heated steam at 500 ℃ [J]. Acta Metall. Sin., 2011, 47: 163
[15] (李士炉, 姚美意, 张 欣等. 添加Cu对M5合金在500 ℃过热蒸汽中耐腐蚀性能的影响 [J]. 金属学报, 2011, 47: 163)
[16] Zhu L, Yao M Y, Sun G C, et al. Effect of Bi addition on the corrosion resistance of Zr-1Nb alloy in deionized water at 360 ℃ and 18.6 MPa [J]. Acta Metall. Sin., 2013, 49: 51
[16] (朱 莉, 姚美意, 孙国成等. 添加Bi对Zr-1Nb合金在360 ℃和18.6 MPa去离子水中耐腐蚀性能的影响 [J]. 金属学报, 2013, 49: 51)
[17] Ploc R A. Transmission electron microscopy of α-ZrO2 films formed in 573 K oxygen [J]. J. Nucl. Mater., 1976, 61: 79
[18] Warr B D, Elmoselhi M B, Newcomb S B, et al. Oxide characteristics and their relationship to hydrogen uptake in zirconium alloys [A]. Zirconium in the Nuclear Industry: Ninth International Symposium [C]. Conshohocken, Philadelphia: American Society for Testing and Materials, 1991: 740
[19] Gou S Q, Zhou B X, Chen C M, et al. Investigation of oxide layers formed on zircaloy-4 coarse-grained specimens corroded at 360 ℃ in lithiated aqueous solution [J]. Corros. Sci, 2015, 92: 237
[20] Ni N, Hudson D, Wei J, et al. How the crystallography and nanoscale chemistry of the metal/oxide interface develops during the aqueous oxidation of zirconium cladding alloys [J]. Acta Mater., 2012, 60: 7132
[21] Hu J, Garner A, Ni N, et al. Identifying suboxide grains at the metal-oxide interface of a corroded Zr-1.0%Nb alloy using (S) TEM, transmission-EBSD and EELS [J]. Micron, 2015, 69: 35
[22] Foord D T, Newcomb S B. The formation of ω-Zr during the oxidation of zircaloy-4 [A]. Proceedings of the 52nd Meeting of the Electron Microscopy Society of America [C]. New Orleans: AIP Publishing, 1994: 668
[23] Foord D T, Newcomb S B. The microstructural characterisation of factors which determine the degradation behaviour of zircaloy-4 [A]. Proceedings of the Third International Conference on the Microscopy of Oxidation [C]. Cambridge, U.K.World Scientific Publishing, 1996: 488
[24] Bossis P, Lelièvre G, Barberis P, et al. Multi-scale characterization of the metal-oxide interface of zirconium alloys [A]. Zirconium in the Nuclear Industry: 12th International Symposium [C]. Conshohocken, Philadelphia: American Society for Testing and Materials, 2000: 918
[25] Wang Z. TEM study on the behavior of zirconium alloy in the early stage of oxidation in different environments [D]. Shanghai: Shanghai University, 2016
[25] (王 祯. TEM研究锆合金在不同环境下氧化初期的行为 [D]. 上海: 上海大学, 2016)
[26] Du C X. Study on the microstructure of early oxide film of Zr-4 alloy corrosion [D]. Shanghai: Shanghai University, 2011
[26] (杜晨曦. Zr-4合金腐蚀早期氧化膜的显微组织研究 [D]. 上海: 上海大学, 2011)
[27] Xie S J. A Study of the mechanism for the anisotropic corrosion of zirconium alloys [D]. Shanghai: Shanghai University, 2017
[27] (谢世敬. 锆合金腐蚀各向异性的机理研究 [D]. 上海: 上海大学, 2017)
[1] 廖京京, 张伟, 张君松, 吴军, 杨忠波, 彭倩, 邱绍宇. Zr-Sn-Nb-Fe-V合金在过热蒸汽中的周期性钝化-转折行为[J]. 金属学报, 2023, 59(2): 289-296.
[2] 姚美意,张兴旺,侯可可,张金龙,胡鹏飞,彭剑超,周邦新. Zr-0.75Sn-0.35Fe-0.15Cr合金在250 ℃去离子水中的初期腐蚀行为[J]. 金属学报, 2020, 56(2): 221-230.
[3] 陈兵,高长源,黄娇,毛亚婧,姚美意,张金龙,周邦新,李强. β-(Nb, Zr)第二相合金在360 ℃去离子水中的腐蚀行为[J]. 金属学报, 2017, 53(4): 447-454.
[4] 任伊宾, 李俊, 王青川, 杨柯. MRI磁兼容合金研究[J]. 金属学报, 2017, 53(10): 1323-1330.
[5] 韦天国,林建康,龙冲生,陈洪生. 蒸汽中的溶解氧对锆合金腐蚀行为的影响*[J]. 金属学报, 2016, 52(2): 209-216.
[6] 张诚,宋西平,刘敬茹,杨云,尤力. 氘含量对Zr-4合金显微组织和力学性能的影响*[J]. 金属学报, 2016, 52(12): 1572-1578.
[7] 张骏,姚美意,冯炫凯,王志刚,黄娇,戴训,张金龙,周邦新. Zr-Sn-Fe-Cr-(Nb)合金在500 ℃过热蒸汽中的腐蚀各向异性研究*[J]. 金属学报, 2016, 52(12): 1565-1571.
[8] 王桢,周邦新,王波阳,黄娇,姚美意,张金龙. Zr-0.72Sn-0.32Fe-0.15Cr-0.97Nb合金中的第二相及其腐蚀行为*[J]. 金属学报, 2016, 52(1): 78-84.
[9] 王波阳,周邦新,王桢,黄娇,姚美意,周军. Zr-0.72Sn-0.32Fe-0.14Cr-xNb合金在500 ℃过热蒸汽中的耐腐蚀性能*[J]. 金属学报, 2015, 51(12): 1545-1552.
[10] 章海霞, 李中奎, 周廉, 许并社, 王永祯. 氧化膜结构及内应力对新锆合金腐蚀机理的影响[J]. 金属学报, 2014, 50(12): 1529-1537.
[11] 李烨, 张龙, 朱正旺, 李宏, 王爱民, 张海峰. 热处理对一种高强Zr-Ti合金组织和力学性能的影响*[J]. 金属学报, 2014, 50(1): 19-24.
[12] 韦天国,龙冲生,苗志,刘云明,栾佰峰. Zr-0.4Fe-1.0Cr-x Mo合金在500℃和10.3 MPa水蒸汽中的腐蚀行为[J]. 金属学报, 2013, 49(6): 717-724.
[13] 张金龙,谢兴飞,姚美意,周邦新,彭剑超,梁雪. Zr-1Nb-0.7Sn-0.03Fe-xGe合金在360 ℃ LiOH水溶液中耐腐蚀性能的研究[J]. 金属学报, 2013, 29(4): 443-450.
[14] 姚美意 邹玲红 谢兴飞 张金龙 彭剑超 周邦新. 添加Bi对Zr-4合金在400 ℃/10.3 MPa过热蒸汽中耐腐蚀性能的影响[J]. 金属学报, 2012, 48(9): 1097-1102.
[15] 孙国成 周邦新 姚美意 谢世敬 李强. 锆合金在LiOH水溶液中腐蚀的各向异性研究[J]. 金属学报, 2012, 48(9): 1103-1108.