Please wait a minute...
金属学报  2020, Vol. 56 Issue (2): 240-248    DOI: 10.11900/0412.1961.2019.00158
  研究论文 本期目录 | 过刊浏览 |
石墨烯纳米片增强镁基复合材料力学性能及增强机制
周霞1,2(),刘霄霞2
1. 大连理工大学工业装备结构分析国家重点实验室 大连 116024
2. 大连理工大学工程力学系  大连 116024
Mechanical Properties and Strengthening Mechanism of Graphene Nanoplatelets Reinforced Magnesium Matrix Composites
ZHOU Xia1,2(),LIU Xiaoxia2
1. State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian 116024, China
2. Department of Engineering Mechanics, Dalian University of Technology, Dalian 116024, China
引用本文:

周霞,刘霄霞. 石墨烯纳米片增强镁基复合材料力学性能及增强机制[J]. 金属学报, 2020, 56(2): 240-248.
Xia ZHOU, Xiaoxia LIU. Mechanical Properties and Strengthening Mechanism of Graphene Nanoplatelets Reinforced Magnesium Matrix Composites[J]. Acta Metall Sin, 2020, 56(2): 240-248.

全文: PDF(31802 KB)   HTML
摘要: 

采用分子动力学方法(MD)对单层石墨烯纳米片(GNPs)与单面及双面Ni包覆单层GNP (Ni-GNP、Ni-GNP-Ni)增强镁基复合材料(GNP/Mg、Ni-GNP/Mg、Ni-GNP-Ni/Mg)在单轴拉伸作用下的力学性能进行了研究,并与含有空位缺陷的双面Ni包覆单层GNP (Ni-defected GNP-Ni)及双面Ni包覆多层GNPs (Ni-nGNPs-Ni)增强镁基复合材料(Ni-defected GNP-Ni/Mg、Ni-nGNPs-Ni/Mg (n为GPNs层数))拉伸性能进行了对比。研究结果表明:GNPs的加入可以显著增强镁基复合材料的力学性能,与单晶Mg相比,GNP/Mg纳米复合材料在300 K及应变速率为1×109 s-1时的拉伸强度和弹性模量分别提高了32.60%和37.91%,而Ni-GNP-Ni/Mg的拉伸强度和弹性模量分别提高了46.79% 和54.53%;此外,Ni-defected GNP-Ni/Mg复合材料的弹性模量和拉伸强度较GNP/Mg有较大的提高,但其断裂应变提高的幅度较小;而Ni-GNP/Mg复合材料的拉伸强度和断裂应变较GNP/Mg有较大的提高,但其弹性模量提高的幅度较小。Ni-GNP-Ni/Mg基复合材料的弹性模量、拉伸强度和断裂应变随着温度的升高而降低,表现出了温度软化效应,但复合材料弹性模量的变化对温度不敏感。随着Ni-nGNPs-Ni中n的增加,即增强体体积分数增大时,复合材料弹性模量、拉伸强度及断裂应变均随之增大,复合材料表现出良好的综合力学性能。最后通过对原子结构演化的分析,发现Ni-GNP-Ni/Mg纳米复合材料的强化机制主要是界面强化、载荷的有效传递及位错强化。

关键词 石墨烯纳米片镁基复合材料分子动力学模拟力学性能增强机制    
Abstract

To improve the mechanical properties of Mg alloys and broaden their application fields, high performance Mg matrix nanocomposites have received more and more attention nowadays. Therefore, the research on the basic mechanical properties and strengthening mechanism of new Mg matrix composites at nanoscale has important theoretical and practical significance. The mechanical properties of pristine single-layer graphene nanoplatelets (GNPs) and single-side and double-side nickel-coated GNP (Ni-GNP, Ni-GNP-Ni) reinforced Mg composites (GNP/Mg, Ni-GNP/Mg, Ni-GNP-Ni/Mg) are studied under uniaxial tension by molecular dynamics (MD) simulations. Meanwhile, their tensile properties are also compared with those of double-side nickel-coated GNP with vacancy defects (Ni-defected GNP-Ni) and double-side nickel-coated multilayer GNPs (Ni-nGNPs-Ni) reinforced Mg-based composites. The simulated results show that the mechanical properties of Mg matrix composites are improved significantly by the addition of GNPs. Compared with single crystal Mg, the tensile strength and elastic modulus of GNP/Mg nanocomposites at 300 K and 1×109 s-1 are increased by 32.60% and 37.91%, respectively; while the tensile strength and elastic modulus of Ni-GNP-Ni/Mg composites are increased by 46.79% and 54.53%, separately. In addition, there is a larger increase in the elastic modulus and tensile strength but a smaller increase in the fracture strain for Ni-defected GNP-Ni/Mg composites, while there is a larger increase in the tensile strength and fracture strain but a smaller increase in the elastic modulus for Ni-GNP/Mg composites as compared with those of GNP/Mg composites. The elastic modulus, tensile strength and fracture strain of Ni-GNP-Ni/Mg composites decreases with increase in temperature, showing a temperature softening effect, but the variation in the elastic modulus of the composites is insensitive to temperature. With increasing of the layers or volume fractions of GNPs in Ni-nGNPs-Ni, the elastic modulus, tensile strength and fracture strain of the composites are all increased significantly, and the composites show excellent comprehensive mechanical properties. It is concluded that the main strengthening mechanisms for Ni-GNP-Ni/Mg nanocomposites are strong interface bonding, effective load transfer from the Mg matrix to the Ni-GNP-Ni and dislocation strengthening by analysis of the evolution of atomic structure.

Key wordsgraphene nanoplatelet    magnesium matrix composite    molecular dynamics simulation    mechanical property    strengthening mechanism
收稿日期: 2019-05-20     
ZTFLH:  TB331  
基金资助:国家自然科学基金项目(11672055);国家自然科学基金项目(11272072)
作者简介: 周 霞,女,1964年生,教授,博士
图1  不同石墨烯纳米片(GNPs)增强镁基复合材料模型
Interatomic interactionμ / eVR / nm
Mg—C0.00280.35015
Mg—Ni0.00240.2965
GNP—GNP0.002840.34
表1  L-J势函数参数[14,15,16]
图2  不同手性参数GNP的拉伸示意图
图3  不同手性参数的GNP和单晶Mg的拉伸应力-应变曲线
图4  GNP/Mg复合材料拉伸应力-应变曲线

Material

Volume fraction / %Elastic modulus GPaPeak stress GPaFracture stress GPa

Failure strain

GNPMg
Single crystal Mg0.0100.069.705.925.920.094
GNP/Mg3.296.896.127.853.610.182
Ni-GNP/Mg4.096.0102.328.404.360.188
Ni-GNP-Ni/Mg5.294.8107.718.695.240.176
Ni-defected GNP-Ni/Mg5.294.8107.058.374.720.126
表2  不同GNP/Mg复合材料与单晶Mg的力学性能
图5  不同温度下Ni-GNP-Ni/Mg的拉伸应力-应变曲线
图6  不同层数的GNPs/Mg复合材料的拉伸应力-应变曲线

Material

Volume fraction / %Elastic modulus GPaPeak stress GPaFracture stress GPa

Failure strain

GNPMg
Ni-GNP-Ni/Mg5.294.8107.718.695.240.176
Ni-3GNPs-Ni/Mg11.888.2161.3813.3111.860.187
Ni-5GNPs-Ni/Mg18.082.0211.2817.8918.950.192
表3  Ni-nGNPs-Ni/Mg复合材料各项力学性能
图7  基体和增强体拉伸应力-应变曲线
图8  单晶Mg和Ni-GNP-Ni/Mg复合材料中Mg基体在拉伸变形过程中的原子演化构形图
图9  复合材料中未包Ni和包覆Ni的GNP的拉伸变形演化过程
图10  GNP/Mg与Ni-GNP-Ni/Mg复合材料中位错的演化和分布
[1] Lu L, Lai M O, Froyen L. Structure and properties of Mg metal-metal composite [J]. Key Eng. Mater., 2002, 230-232: 287
[2] Dieringa H. Properties of magnesium alloys reinforced with nanoparticles and carbon nanotubes: A review [J]. J. Mater. Sci., 2011, 46: 289
[3] Zhou X, Su D P, Wu C W, et al. Tensile mechanical properties and strengthening mechanism of hybrid carbon nanotube and silicon carbide nanoparticle-reinforced magnesium alloy composites [J]. J. Nanomater., 2012, 2012: 851862
[4] Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films [J]. Science, 2004, 306: 666
[5] Balandin A A, Ghosh S, Bao W Z, et al. Superior thermal conductivity of single layer graphene [J]. Nano Lett., 2008, 8: 902
[6] Lee C, Wei X D, Kysar J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene [J]. Science, 2008, 321: 385
[7] Lee C, Wei X D, Li Q Y, et al. Elastic and frictional properties of graphene [J]. Phys. Status Solidi, 2009, 246B: 2562
[8] Rafiee M A, Rafiee J, Wang Z, et al. Enhanced mechanical properties of nanocomposites at low graphene content [J]. ACS Nano, 2009, 3: 3884
[9] Du X M, Zhen K F, Liu F G. Graphene reinforced magnesium matrix composites by hot pressed sintering [J]. Dig. J. Nanomater. Bios., 2018, 13: 827
[10] Yuan Q H, Zhou G H, Liao L, et al. Interfacial structure in AZ91 alloy composites reinforced by graphene nanosheets [J]. Carbon, 2018, 127: 177
[11] Xiang S L, Gupta M, Wang X J, et al. Enhanced overall strength and ductility of magnesium matrix composites by low content of graphene nanoplatelets [J]. Composites, 2017, 100A: 183
[12] Rong Y, He H P, Zhang L, et al. Molecular dynamics studies on the strengthening mechanism of Al matrix composites reinforced by grapnene nanoplatelets [J]. Comp. Mater. Sci., 2018, 153: 48
[13] Rezaei R. Tensile mechanical characteristics and deformation mechanism of metal-graphene nanolayered composites [J]. Comp. Mater. Sci., 2018, 151: 181
[14] Barfmal M, Montazeri A. MD-based design of SiC/graphene nanocomposites towards better mechanical performance [J]. Ceram. Int., 2017, 43: 17167
[15] Zhou X, Liu X X, Sansoz F, et al. Molecular dynamics simulation on temperature and stain rate-dependent tensile response and failure behavior of Ni-coated CNT/Mg composites [J]. Appl. Phys., 2018, 124A: 506
[16] Zhou X, Song S Y, Li L, et al. Molecular dynamics simulation for mechanical properties of magnesium matrix composites reinforced with nickel-coated single-walled carbon nanotubes [J]. J. Compos. Mater., 2016, 50: 191
[17] LAMMPS simulation software program. LAMMPS Users Manual. 2003. 11 May 2018 version. URL:
[18] Li C Y, Browning A R, Christensen S, et al. Atomistic simulations on multilayer graphene reinforced epoxy composites [J]. Composites, 2012, 43A: 1293
[19] Stukowski A. Visualization and analysis of atomistic simulation data with OVITO—The open visualization tool [J]. Model. Simul. Mater. Sci. Eng., 2010, 18: 015012
[20] Chen W, Fish J. A mathematical homogenization perspective of virial stress [J]. Int. J. Numer. Meth. Eng., 2006, 67: 189
[21] Sun D Y, Mendelev M I, Becker C A, et al. Crystal-melt interfacial free energies in hcp metals: A molecular dynamics study of Mg [J]. Phys. Rev., 2006, 73B: 024116
[22] Stuart S J, Tutein A B, Harrison J A. A reactive potential for hydrocarbons with intermolecular interactions [J]. J. Chem. Phys., 2000, 112: 6472
[23] Sammalkorpi M, Krasheninnikov A, Kuronen A, et al. Mechanical properties of carbon nanotubes with vacancies and related defects [J]. Phys. Rev., 2004, 70B: 245416
[24] Shibuta Y, Maruyama S. Bond-order potential for transition metal carbide cluster for the growth simulation of a single-walled carbon nanotube [J]. Comp. Mater. Sci., 2007, 39: 842
[25] He L C, Guo S S, Lei J C, et al. The effect of stone-thrower-wales defects on mechanical properties of graphene sheets—A molecular dynamics study [J]. Carbon, 2014, 75: 124
[26] Liang J H, Li H J, Qi L H, et al. Influence of Ni-CNTs additions on the microstructure and mechanical properties of extruded Mg-9Al alloy [J]. Mater. Sci. Eng., 2016, A678: 101
[27] Juneja A, Rajasekaran G. Effect of temperature and strain-rate on mechanical properties of defected graphene sheet: A molecular dynamics study [J]. IOP Conf. Ser. Mater. Sci. Eng., 2018, 402: 012020
[1] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[3] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[4] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[5] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[6] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[7] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[8] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[9] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[10] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[11] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[12] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[13] 李述军, 侯文韬, 郝玉琳, 杨锐. 3D打印医用钛合金多孔材料力学性能研究进展[J]. 金属学报, 2023, 59(4): 478-488.
[14] 吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.
[15] 王虎, 赵琳, 彭云, 蔡啸涛, 田志凌. 激光熔化沉积TiB2 增强TiAl基合金涂层的组织及力学性能[J]. 金属学报, 2023, 59(2): 226-236.