Please wait a minute...
金属学报  2019, Vol. 55 Issue (12): 1544-1550    DOI: 10.11900/0412.1961.2019.00140
  研究论文 本期目录 | 过刊浏览 |
激光多次熔凝Zr55Cu30Al10Ni5非晶合金的晶化形态与演化机理
杨高林1,林鑫2(),卢献钢1
1. 浙江工业大学激光先进制造研究院 杭州 310014
2. 西北工业大学凝固技术国家重点实验室 西安 710072
Crystallization Morphology and Evolution Mechanism of Laser Multiple Remelting of Zr55Cu30Al10Ni5 Metallic Glass
YANG Gaolin1,LIN Xin2(),LU Xiangang1
1. Institute of Laser Advanced Manufacturing, Zhejiang University of Technology, Hangzhou 310014, China
2. State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China
引用本文:

杨高林, 林鑫, 卢献钢. 激光多次熔凝Zr55Cu30Al10Ni5非晶合金的晶化形态与演化机理[J]. 金属学报, 2019, 55(12): 1544-1550.
YANG Gaolin, LIN Xin, LU Xiangang. Crystallization Morphology and Evolution Mechanism of Laser Multiple Remelting of Zr55Cu30Al10Ni5 Metallic Glass[J]. Acta Metall Sin, 2019, 55(12): 1544-1550.

全文: PDF(11548 KB)   HTML
摘要: 

采用脉冲激光对Zr55Cu30Al10Ni5非晶合金板进行激光多次熔凝,研究了激光多次熔凝时热影响区的晶化相形态随着熔凝次数增加时的演化规律。结果表明,随着熔凝次数的增加,晶粒数量逐渐增加,晶粒尺寸逐渐变大。随着晶粒的长大,卷入熔池内的晶粒造成的晶化也越来越显著。激光多次熔凝非晶合金时,热影响区内的晶粒尺寸和数量都随熔凝次数的增加而线性增加,不同非晶合金板的形核率和生长速率基本接近,但初始晶粒数量和初始晶粒尺寸不同,这和铜模铸造制备非晶合金板时的具体冷却过程差异有关。

关键词 Zr55Cu30Al10Ni5非晶合金激光多次熔凝晶化形态演化    
Abstract

Laser additive manufacturing technology is a feasible technology for the fabrication of bulk metallic glass with complex geometry. It has the characteristics of small molten pool and high cooling rate. However, crystallization often occurs in heat affected zone (HAZ). In this work, laser multiple remelting of Zr55Cu30Al10Ni5 metallic glass by pulsed laser was carried out and the morphological evolution of the HAZ crystalline phase in the multiple remelting process was studied. The results show that with the increase of the remelting times, the crystalline grains number and size are both improved. With the growth of the grains, the crystallization caused by the growth of the crystalline grains in the molten pool also becomes more and more remarkable. Both the size and number of the grains in the HAZ increase linearly with the increase of the remelting times. The nucleation rate and growth rate of different metallic glass plates are close, whereas the initial crystalline grains number and size are different, which are attributed to the different cooling process in the copper casting of the metallic glass plates.

Key wordsZr55Cu30Al10Ni5 metallic glass    laser multiple remelting    crystallization morphology    evolution
收稿日期: 2019-05-05     
ZTFLH:  TG24  
基金资助:凝固技术国家重点实验室开放课题项目(No.SKLSP201745);浙江省自然科学基金项目(No.LY16E050014)
作者简介: 杨高林,男,1980年生,博士
Sample No.AlNiCuZr
A8.936.1629.8055.11
B7.795.2229.5857.42
C9.695.4732.4352.40
D8.549.1424.1358.19
表1  不同非晶合金板的电子探针成分测量结果 (atomic fraction / %)
图1  激光熔凝1~16次No.B Zr55非晶合金板的熔池形貌OM像
图2  激光熔凝1、3、7和13次No.C非晶合金板后的熔池形貌OM像
图3  No.B Zr55非晶合金板在多次熔凝过程中的热影响区典型晶化相形貌演化过程
图4  No.C非晶合金板在多次熔凝过程中的晶粒微观组织演化过程
图5  No.C非晶合金板激光熔凝后的TEM明场像和选区电子衍射(SAED)花样
图6  No.A非晶合金板热影响区晶化区域的SEM像及相应的EPMA面扫描结果
图7  激光多次熔凝No.B和No.C非晶合金板过程中的晶粒数量随熔凝次数的变化统计
图8  激光多次熔凝No.B和No.C非晶合金板过程中的晶粒直径演化
[1] Inoue A. Bulk glassy alloys: Historical development and current research [J]. Engineering, 2015, 1: 185
[2] Hu Z Q, Zhang H F. Recent progress in the area of bulk amorphous alloys and composites [J]. Acta Metall. Sin., 2010, 46: 1391
[2] (胡壮麒, 张海峰. 块状非晶合金及其复合材料研究进展 [J]. 金属学报, 2010, 46: 1391)
[3] Trexler M M, Thadhani N N. Mechanical properties of bulk metallic glasses [J]. Prog. Mater. Sci., 2010, 55: 759
[4] Li H X, Lu Z C, Wang S L, et al. Fe-based bulk metallic glasses: Glass formation, fabrication, properties and applications [J]. Prog. Mater. Sci., 2019, 103: 235
[5] Wang Y S, Linghu R K, Liu Y Y, et al. Superplasticity and constitutive relationship in a Ti-based metallic glassy composite [J]. J. Alloys Compd., 2018, 751: 391
[6] Gong P, Kou H C, Wang S B, et al. Research on thermoplastic formability and nanomoulding mechanism of lightweight Ti-based bulk metallic glasses [J]. J. Alloys Compd., 2019, 801: 267
[7] Hui X D, Chen G L. Bulk Amorphous Alloys [M]. Beijing: Chemical Industry Press., 2007: 1
[7] (惠希东, 陈国良. 块体非晶合金 [M]. 北京: 化学工业出版社, 2007: 1)
[8] Wang W H. The Nature and properties of amorphous matter [J]. Prog. Phys., 2013, 33: 177
[8] (汪卫华. 非晶态物质的本质和特性 [J]. 物理学进展, 2013, 33: 177)
[9] Chen H S. Glassy metals [J]. Rep. Prog. Phys., 1980, 43: 353
[10] Wen X L, Wang Q Z, Mu Q, et al. Laser solid forming additive manufacturing TiB2 reinforced 2024Al composite: Microstructure and mechanical properties [J]. Mater. Sci. Eng., 2019, A745: 319
[11] Zhang Y Y, Lin X, Wang L L, et al. Microstructural analysis of Zr55Cu30Al10Ni5 bulk metallic glasses by laser surface remelting and laser solid forming [J]. Intermetallics, 2015, 66: 22
[12] Zhang Y Y, Lin X, Wei L, et al. Influence of powder size on the crystallization behavior during laser solid forming Zr55Cu30Al10Ni5 bulk amorphous alloy [J]. Intermetallics, 2016, 76: 1
[13] Mahbooba Z, Thorsson L, Unosson M, et al. Additive manufacturing of an iron-based bulk metallic glass larger than the critical casting thickness [J]. Appl. Mater. Today, 2018, 11: 264
[14] Lu Y Z, Huang Y J, Wu J. Laser additive manufacturing of structural-graded bulk metallic glass [J]. J. Alloys Compd., 2018, 766: 506
[15] Shen Y Y, Li Y Q, Chen C, et al. 3D printing of large, complex metallic glass structures [J]. Mater. Des., 2017, 117: 213
[16] Li Y Q, Shen Y Y, Chen C, et al. Building metallic glass structures on crystalline metal substrates by laser-foil-printing additive manufacturing [J]. J. Mater. Process. Technol., 2017, 248: 249
[17] Li Y Q, Shen Y Y, Hung C H, et al. Additive manufacturing of Zr-based metallic glass structures on 304 stainless steel substrates via V/Ti/Zr intermediate layers [J]. Mater. Sci. Eng., 2018, A729: 185
[18] Li Y Q, Shen Y Y, Leu M C, et al. Building Zr-based metallic glass part on Ti-6Al-4V substrate by laser-foil-printing additive manufacturing [J]. Acta Mater., 2018, 144: 810
[19] Yang G L, Lin X, Liu F C, et al. Laser solid forming Zr-based bulk metallic glass [J]. Intermetallics, 2012, 22: 110
[20] Yang G L, Lin X, Hu Q, et al. Crystallization behavior of annealed Zr55Cu30Al10Ni5 bulk metallic glass during pulsed laser remelting [J]. Acta Metall. Sin., 2013, 49: 649
[20] (杨高林, 林 鑫, 胡 桥等. Zr55Cu30Al10Ni5块体非晶合金退火处理后脉冲激光重熔晶化行为 [J]. 金属学报, 2013, 49: 649)
[21] Liu W W, Lin X, Yang G L, et al. Crystallization behavior of heat-affected zone by laser remelting bulk metallic glass Zr55Al10Ni5Cu30 [J]. Chin. J. Lasers, 2010, 37: 2104
[21] (刘伟伟, 林 鑫, 杨高林等. 脉冲激光重熔Zr55Al10Ni5Cu30合金非晶的热影响区晶化行为 [J]. 中国激光, 2010, 37: 2104)
[22] Kurz W, Fisher D J, translated by Li J G, Hu Q D. Fundamentals of Solidification [M]. 4th Ed., Beijing: Higher Education Press, 2010: 116
[22] (Kurz W, Fisher D J著, 李建国, 胡侨丹译. 凝固原理 [M]. 第四版, 北京: 高等教育出版社, 2010: 116)
[23] Chen J X, Wang Q, Dong C. Cluster rule in alloy phase and its application in Zr-Al-Ni system [J]. Rare Met. Mater. Eng., 2011, 40: 69
[23] (陈季香, 王 清, 董 闯. 合金相团簇规律及其在Zr-Al-Ni非晶体系中的应用 [J]. 稀有金属材料与工程, 2011, 40: 69)
[24] Hao S M, Jiang M, Li H X. Thermodynamics of Materials [M]. Beijing: Chemical Industry Press, 2004: 240
[24] (郝士明, 蒋 敏, 李洪晓. 材料热力学 [M]. 北京: 化学工业出版社, 2004: 240)
[25] Schroers J, Johnson W L. History dependent crystallization of Zr41Ti14Cu12Ni10Be23 melts [J]. J. Appl. Phys., 2000, 88: 44
[26] Yang G L, Lin X, Hu Q, et al. Effect of specimen temperature on crystallization during laser remeltitng Zr55Cu30Al10Ni5 bulk metallic glass [J]. Acta Metall. Sin., 2013, 49: 925
[26] (杨高林, 林 鑫, 胡 桥等. 试样温度对激光重熔Zr55Cu30Al10Ni5块体非晶合金晶化的影响 [J]. 金属学报, 2013, 49: 925)
[1] 张金钰, 屈启蒙, 王亚强, 吴凯, 刘刚, 孙军. 金属/高熵合金纳米多层膜的力学性能及其辐照效应研究进展[J]. 金属学报, 2022, 58(11): 1371-1384.
[2] 易晓鸥, 韩文妥, 刘平平, FERRONIFrancesco, 詹倩, 万发荣. 金属W中辐照缺陷的产生、演化与热回复机制[J]. 金属学报, 2021, 57(3): 257-271.
[3] 盛鹰, 贾彬, 王汝恒, 陈国平. 一种原子尺度应变定义方法及其在识别微观缺陷演化中的应用[J]. 金属学报, 2020, 56(8): 1144-1154.
[4] 魏洁, 魏英华, 李京, 赵洪涛, 吕晨曦, 董俊华, 柯伟, 何小燕. 带损伤环氧涂层钢筋在Cl-和碳化耦合作用下的腐蚀行为[J]. 金属学报, 2020, 56(6): 885-897.
[5] 王霞, 王维, 杨光, 王超, 任宇航. 激光沉积薄壁结构热力演化的尺寸效应[J]. 金属学报, 2020, 56(5): 745-752.
[6] 吴正凯, 吴圣川, 张杰, 宋哲, 胡雅楠, 康国政, 张海鸥. 基于同步辐射X射线成像的选区激光熔化Ti-6Al-4V合金缺陷致疲劳行为[J]. 金属学报, 2019, 55(7): 811-820.
[7] 孙德建,刘林,黄太文,张家晨,曹凯莉,张军,苏海军,傅恒志. 镍基单晶高温合金叶片模拟件平台处的枝晶生长和取向演化[J]. 金属学报, 2019, 55(5): 619-626.
[8] 闫华东,靳慧. G20Mn5N铸钢件微细观孔洞三维特征及形态演化[J]. 金属学报, 2019, 55(3): 341-348.
[9] 高英俊, 卢昱江, 孔令一, 邓芊芊, 黄礼琳, 罗志荣. 晶体相场模型及其在材料微结构演化中的应用[J]. 金属学报, 2018, 54(2): 278-292.
[10] 马宗义, 商乔, 倪丁瑞, 肖伯律. 镁合金搅拌摩擦焊接的研究现状与展望[J]. 金属学报, 2018, 54(11): 1597-1617.
[11] 骆良顺,刘桐,张延宁,苏彦庆,郭景杰,傅恒志. 定向凝固Al-Y合金组织演化规律及小平面相生长*I. Al-15%Y过共晶合金组织演化规律[J]. 金属学报, 2016, 52(7): 859-865.
[12] 安金岚,王磊,刘杨,胥国华,赵光普. 长期时效对GH4169合金组织演化及低周疲劳行为的影响*[J]. 金属学报, 2015, 51(7): 835-843.
[13] 马文婧,柯常波,周敏波,梁水保,张新平. Sn/Cu互连体系界面和金属间化合物层Kirkendall空洞演化和生长动力学的晶体相场法模拟*[J]. 金属学报, 2015, 51(7): 873-882.
[14] 谢君, 于金江, 孙晓峰, 金涛, 孙元. 高钨K416B铸造镍基合金高温蠕变期间碳化物演化行为[J]. 金属学报, 2015, 51(4): 458-464.
[15] 孙文, 秦学智, 郭建亭, 楼琅洪, 周兰章. (W+Mo)/Cr比对铸造镍基高温合金时效组织和持久性能的影响[J]. 金属学报, 2015, 51(1): 67-76.