Please wait a minute...
金属学报  2020, Vol. 56 Issue (1): 36-52    DOI: 10.11900/0412.1961.2019.00129
  综述 本期目录 | 过刊浏览 |
激光增材制造成型马氏体时效钢研究进展
谭超林1,2,周克崧1,2(),马文有2,曾德长1
1. 华南理工大学材料科学与工程学院  广州 510640
2. 广东省新材料研究所现代材料表面工程技术国家工程实验室  广州 510651
Research Progress of Laser Additive Manufacturing of Maraging Steels
TAN Chaolin1,2,ZHOU Kesong1,2(),MA Wenyou2,ZENG Dechang1
1. School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
2. National Engineering Laboratory for Modern Materials Surface Engineering Technology, Guangdong Institute of New Materials, Guangzhou 510651, China
引用本文:

谭超林,周克崧,马文有,曾德长. 激光增材制造成型马氏体时效钢研究进展[J]. 金属学报, 2020, 56(1): 36-52.
Chaolin TAN, Kesong ZHOU, Wenyou MA, Dechang ZENG. Research Progress of Laser Additive Manufacturing of Maraging Steels[J]. Acta Metall Sin, 2020, 56(1): 36-52.

全文: PDF(26345 KB)   HTML
摘要: 

本文较全面地综述了国内外激光增材制造成型马氏体时效钢(MS)的研究和应用现状。分析了选区激光熔化(SLM)制备MS特有的优势,并从SLM成型MS参数与性能优化、成型各向异性、时效强化机理、梯度材料和模具应用5个方面进行了系统介绍。研究表明,SLM成型MS的工艺窗口较宽,易获得成型致密度>99%的试样;经过激光和热处理工艺参数优化后,其力学性能可达标准锻件水平。MS时效强化遵循Orowan位错绕过机制,成型方向对MS力学性能影响较小。此外,SLM能够制备高结合强度MS基梯度材料(MS-Cu和MS-H13等)零件,为制备梯度材料功能件开辟了新途径。最后,介绍了SLM成型MS面向随形冷却模具的应用,并提出了今后的研究展望。

关键词 选区激光熔化马氏体时效钢激光参数梯度材料随形冷却    
Abstract

Additive manufacture is recognized as a world-altering technology which triggered a world-wide intensive research interest. Here the research progress and application of the laser additive manufacturing maraging steel (MS) are systematically outlined. The advantages of selective laser melting (SLM) additive manufacture of MS is emphasized. The processing parameter and properties optimizations, build orientation based anisotropies, age hardening mechanism, gradient materials, and applications in die and moulds of SLM-processed MS are reviewed in detail. Achieving relative density of >99% in SLM-processed MS is effortless, owing to the wide SLM process window of MS. Mechanical properties of MS produced with optimized SLM processing parameters and post heat treatments are comparable to traditionally wrought parts. The build orientation hardly affects the property anisotropies of MS. The age hardening behaviour in MS follows Orowan bowing mechanism. MS-based gradient multi-materials (such as MS-Cu, MS-H13, etc.) with high bonding strength are fabricated by SLM, which provides a new approach to produce high-performance functionally gradient multi-materials components. Lastly, the application in conformal cooling moulds of SLM-processed MS is elucidated, and future research interests related to MS are also proposed.

Key wordsselective laser melting    maraging steel    laser parameter    gradient material    conformal cooling
收稿日期: 2019-04-24     
ZTFLH:  TG665  
基金资助:广东省科学院建设国内一流研究机构行动专项资金项目(2019GDASYL-0502006);广东省科学院建设国内一流研究机构行动专项资金项目(2019GDASYL-0402004);广东省科学院建设国内一流研究机构行动专项资金项目(2019GD-ASYL-0402006);广东省科学院建设国内一流研究机构行动专项资金项目(2019GDASYL-0501009);广东省科学院建设国内一流研究机构行动专项资金项目(2017A070701027);广州市对外科技合作计划项目(201907010008);广东省工业技术研究院(广州有色金属研究院)项目(2014B070705007)
作者简介: 谭超林,男,1991年生,博士
图1  SLM设备和成型工艺参数示意图[16]
图2  SLM制备的马氏体时效钢(MS)试样典型显微组织的OM和SEM像[43]
MachineP / Wvs / (mm·s-1)h / μmt / μmEv / (J·mm-3)Density / %Ref.
EOS M280804005040100>99[45]
EOS M290285960110406799.9[16]
Concept laser M2-60010530-99.5[38]
Dimetal-100160400703516399.3[50]
Concept laser M31051501253018799.2[51]
-1001801403013299.7[52]
Renishaw AM250200-904060~77About 99.0[53]
Matsuura Avance-25300700120507199.8[54]
Concept laser M2180600105309599.5[55]
表1  SLM成型18Ni300马氏体时效钢工艺参数及性能[16,38,45,50,51,52,53,54,55]
AF or HTedUTS / MPaYS / MPaEl / %HardnessRef.
SLM AF106590111.530 HRC[46]
840 ℃+490 ℃, 6 h99818954.552 HRC
SLM AF1165±7915±712.4±0.135~36 HRC[16]
490 ℃, 6 h2014±91967±113.3±0.153~55 HRC
840 ℃+490 ℃, 6 h1943±81882±145.6±0.152~54 HRC
SLM AF1178-7.9381 HV[49]
840 ℃+480 ℃, 6 h2164-2.5646 HV
SLM AF1290±1141214±9913.3±1.9396 HV[51,56]
480 ℃, 5 h2217±731998±321.6±0.3635 HV
SLM AF1192-835 HRC[52]
SLM AF1100105012.1About 420 HV[38]
490 ℃, 6 h180017204.5About 600 HV
SLM AF1125-10.4About 400 HV[54]
820 ℃+460 ℃, 6 h2033-5.3618 HV
SLM AFAbout 1190-About 12.5About 350 HV[57]
490 ℃, 3 hAbout 1860-About 5.6About 560 HV
SLM AF1188±10915±136.2±1.3-[58]
460 ℃, 8 h2017±581957±431.5±0.2-
600 ℃, 10 min1659±1191557±1401.6±0.1-
Wrought1000~1170760~8956~1535 HRC[56]
Wrought aged1930~20501862~20005~752 HRC[4,59]
表2  SLM成型18Ni300马氏体时效钢热处理工艺及其力学性能[4,16,38,46,49,51,52,54,56,57,58,59]
图3  不同时效处理工艺对拉伸强度和断裂延伸率的影响[60]
图4  扫描策略对组织织构的影响[55,61]
SLM directionSpecimenUTS / MPaYS / MPaEl / %HardnessRef.
HorizontalSLM AF1165±7915±712.4±0.134.8 HRC[43]
(X-Y plane)SLM aged2014±91967±113.3±0.154.6 HRC[43]
VerticalSLM AF1085±19920±2411.3±0.335.7 HRC[43]
(Z-X or Z-Y)SLM aged1942±311867±222.8±0.152.9 HRC[43]
HorizontalSLM AF1100105012.1About 420 HV[38]
SLM aged180017204.5About 600 HV[38]
VerticalSLM AF1205108012.0-[38]
SLM aged185017505.1-[38]
HorizontalSLM AF1260±79768±2913.9±2.0-[55]
SLM aged2216±1561953±873.1±0.4-[55]
VerticalSLM AF1325±51825±9614.0±1.5-[55]
SLM aged2088±1901833±653.2±0.6-[55]
HorizontalSLM AF1174106915.7382 HV[60]
SLM aged1811172910.5552 HV[60]
45°SLM AF11449916.8327 HV[60]
SLM aged180217149.9558 HV[60]
VerticalSLM AF105789213.8375 HV[60]
SLM aged1816172310.1375 HV[60]
StandardWrought1000~1170760~8956~1535 HRC[56]
Wrought aged1930~20501862~20005~752 HRC[4,59]
表3  SLM成型18Ni300马氏体时效钢成型方向对力学性能的影响[4,38,43,55,56,59,60]
图5  MS时效处理后APT分析及采用传统方法和激光金属沉积(LMD)制备的MS试样时效处理后APT分析[42,63]
图6  SLM成型MS试样时效处理后TEM分析[43]

Model

Fiber laser energy

Build volumeScan speedBuild rate
mm×mm×mmm·s-1cm3·h-1
EOS M290400 W250×250×325Max. 7Max. 23
EOS M4001 kW400×400×400Max. 7Max. 30
M2 Cusing200 W or 400 W250×250×280Max. 7Max. 20
SLM250200 W or 400 W250×250×300Max. 7Max. 20
EOS M400-4400 W×4400×400×400Max. 7Max. 100
SLM 500HL400 W×2 & 1 kW×2500×280×325Max. 15Max. 70
SLM 280400 W & 1 kW280×280×350Max. 15Max. 35
表4  常用SLM设备的参数[70,71,72]
图7  SLM成型MS-Cu梯度材料过程示意图[73]
图8  SLM成型MS-Cu试样界面结合机理分析[73]
图9  SLM成型的随形冷却模具与传统冷却模具对比[79]
图10  基于SLM的复合技术成型的MS随形冷却模具
[1] Thompson S M, Bian L K, Shamsaei N, et al. An overview of direct laser deposition for additive manufacturing; Part I: Transport phenomena, modeling and diagnostics [J]. Addit. Manuf., 2015, 8: 36
[2] Council A, Petch M. 3D Printing: Rise of the Third Industrial Revolution [M]. Gyges 3D Presents, 2014: 1
[3] Olakanmi E O, Cochrane RF, Dalgarno KW. A review on selective laser sintering/melting (SLS/SLM) of aluminium alloy powders: Processing, microstructure, and properties [J]. Prog. Mater. Sci., 2015, 74: 401
[4] Handbook International ASM. ASM Handbook, Vol.1: Properties and Selection: Irons, Steels, and High-Performance Alloys [M]. Ohio: ASM, 1991: 1872
[5] Frazier W E. Metal additive manufacturing: A review [J]. J. Mater. Eng. Perf., 2014, 23: 1917
[6] Stampfl J, Hatzenbichler M. Additive manufacturing technologies [A]. CIRP Encyclopedia of Production Engineering [C]. Berlin, Heidelberg: Springer, 2014: 20
[7] Huang SH, Liu P, Mokasdar A, et al. Additive manufacturing and its societal impact: A literature review [J]. Int. J. Adv. Manuf. Technol., 2012, 67: 1191
[8] Berman B. 3-D printing: The new industrial revolution [J]. Bus. Horiz., 2012, 55: 155
[9] Lin X, Huang W D. High performance metal additive manufacturing technology applied in aviation field [J]. Mater. China, 2015, 34: 684
[9] (林 鑫, 黄卫东. 应用于航空领域的金属高性能增材制造技术 [J]. 中国材料进展, 2015, 34: 684)
[10] Gao W, Zhang Y B, Ramanujan D, et al. The status, challenges, and future of additive manufacturing in engineering [J]. Comput.-Aided Des., 2015, 69: 65
[11] Rashed M G, Ashraf M, Mines R A W, et al. Metallic microlattice materials: A current state of the art on manufacturing, mechanical properties and applications [J]. Mater. Des., 2016, 95: 518
[12] Tofail S A M, Koumoulos E P, Bandyopadhyay A, et al. Additive manufacturing: Scientific and technological challenges, market uptake and opportunities [J]. Mater. Today, 2018, 21: 22
[13] Wohlers T. Wohlers Report 2018: 3D Printing and Additive Manufacturing State of the Industry: Annual Worldwide Progress Report [R]. Wohlers Associates, 2018
[14] Gu D D, Meiners W, Wissenbach K, et al. Laser additive manufacturing of metallic components: Materials, processes and mechanisms [J]. Int. Mater. Rev., 2013, 57: 133
[15] DebRoy T, Wei H L, Zuback J S, et al. Additive manufacturing of metallic components—Process, structure and properties [J]. Prog. Mater. Sci., 2018, 92: 112
[16] Tan C L, Zhou K S, Ma W Y, et al. Microstructural evolution, nanoprecipitation behavior and mechanical properties of selective laser melted high-performance grade 300 maraging steel [J]. Mater. Des., 2017, 134: 23
[17] Murr L E. Strategies for creating living, additively manufactured, open-cellular metal and alloy implants by promoting osseointegration, osteoinduction and vascularization: An overview [J]. J. Mater. Sci. Technol., 2019, 35: 231
[18] Brooks H, Brigden K. Design of conformal cooling layers with self-supporting lattices for additively manufactured tooling [J]. Addit. Manuf., 2016, 11: 16
[19] Zhao S, Li S J, Wang S G, et al. Compressive and fatigue behavior of functionally graded Ti-6Al-4V meshes fabricated by electron beam melting [J]. Acta Mater., 2018, 150: 1
[20] Li S, Hassanin H, Attallah MM, et al. The development of TiNi-based negative Poisson's ratio structure using selective laser melting [J]. Acta Mater., 2016, 105: 75
[21] Zhao X L, Li S J, Zhang M, et al. Comparison of the microstructures and mechanical properties of Ti-6Al-4V fabricated by selective laser melting and electron beam melting [J]. Mater. Des., 2016, 95: 21
[22] Gao P, Wei K W, Yu H C, et al. Influence of layer thickness on microstructure and mechanical properties of selective laser melted Ti-5Al-2.5Sn alloy [J]. Acta Metall. Sin., 2018, 54: 999
[22] (高 飘, 魏恺文, 喻寒琛等. 分层厚度对选区激光熔化成形Ti-5Al-2.5Sn合金组织与性能的影响规律 [J]. 金属学报, 2018, 54: 999)
[23] Zhang W Q, Zhu H H, Hu Z H, et al. Study on the selective laser melting of AlSi10Mg [J]. Acta Metall. Sin., 2017, 53: 918
[23] (张文奇, 朱海红, 胡志恒等. AlSi10Mg的激光选区熔化成形研究 [J]. 金属学报, 2017, 53: 918)
[24] Zhang J L, Song B, Wei Q S, et al. A review of selective laser melting of aluminum alloys: Processing, microstructure, property and developing trends [J]. J. Mater. Sci. Technol., 2019, 35: 270
[25] Wang X Q, Carter LN, Pang B, et al. Microstructure and yield strength of SLM-fabricated CM247LC Ni-Superalloy [J]. Acta Mater., 2017, 128: 87
[26] Liu Y C, Zhang H J, Guo Q Y, et al. Microstructure evolution of inconel 718 superalloy during hot working and its recent development tendency [J]. Acta Metall. Sin., 2018, 54: 1653
[26] (刘永长, 张宏军, 郭倩颖等. Inconel 718变形高温合金热加工组织演变与发展趋势 [J]. 金属学报, 2018, 54: 1653)
[27] Fayazfar H, Salarian M, Rogalsky A, et al. A critical review of powder-based additive manufacturing of ferrous alloys: Process parameters, microstructure and mechanical properties [J]. Mater. Des., 2018, 144: 98
[28] Yang C, Zhao Y J, Kang L M, et al. High-strength silicon brass manufactured by selective laser melting [J]. Mater. Lett., 2018, 210: 169
[29] Tan C, Zhou K S, Ma W Y, et al. Selective laser melting of high-performance pure tungsten: Parameter design, densification behavior and mechanical properties [J]. Sci. Technol. Adv. Mater., 2018, 19: 370
[30] Li N, Huang S, Zhang G D, et al. Progress in additive manufacturing on new materials: A review [J]. J. Mater. Sci. Technol., 2019, 35: 242
[31] Vasudevan V K, Kim S J, Wayman C M. Precipitation reactions and strengthening behavior in 18 Wt Pct nickel maraging steels [J]. Metall. Trans., 1990, 21A: 2655
[32] Kürnsteiner P, Wilms M B, Weisheit A, et al. Massive nanoprecipitation in an Fe-19Ni-xAl maraging steel triggered by the intrinsic heat treatment during laser metal deposition [J]. Acta Mater., 2017, 129: 52
[33] Chen J G, Zhang J F, Lu F S, et al. Outline of strengthening ways in 18Ni maraging steel [J]. Metall. Funct. Mater., 2009, 16(4): 46
[33] (陈建刚, 张建福, 卢凤双等. 18Ni马氏体时效钢强化方法概述 [J]. 金属功能材料, 2009, 16(4): 46)
[34] Decker R F, Floreen S. Maraging steels—The first 30 years [A]. Maraging Steels: Recent Developments and Applications [C]. Warrendale, PA: TMS, 1988: 1
[35] Pereloma E V, Shekhter A, Miller M K, et al. Ageing behaviour of an Fe-20Ni-1.8Mn-1.6Ti-0.59Al (wt%) maraging alloy: Clustering, precipitation and hardening [J]. Acta Mater., 2004, 52: 5589
[36] Li Y C, Yan W, Cotton J D, et al. A new 1.9 GPa maraging stainless steel strengthened by multiple precipitating species [J]. Mater. Des., 2015, 82: 56
[37] Jiang S H, Wang H, Wu Y, et al. Ultrastrong steel via minimal lattice misfit and high-density nanoprecipitation [J]. Nature, 2017, 544: 460
[38] Becker T H, Dimitrov D. The achievable mechanical properties of SLM produced maraging Steel 300 components [J]. Rapid Prototyp. J., 2016, 22: 487
[39] Zheng B, Zhou Y, Smugeresky J E, et al. Thermal behavior and microstructure evolution during laser deposition with laser-engineered net shaping: Part II. Experimental investigation and discussion [J]. Metall. Mater. Trans., 2008, 39A: 2237
[40] J?gle E A, Sheng Z D, Kürnsteiner P, et al. Comparison of maraging steel micro- and nanostructure produced conventionally and by laser additive manufacturing [J]. Materials, 2016, 10: 8
[41] Xu Z J, Zhang Y X. Quench rates in air, water, and liquid nitrogen, and inference of temperature in volcanic eruption columns [J]. Earth Planet. Sci. Lett., 2002, 200: 315
[42] J?gle E A, Choi P P, Van Humbeeck J, et al. Precipitation and austenite reversion behavior of a maraging steel produced by selective laser melting [J]. J. Mater. Res., 2014, 29: 2072
[43] Tan C L, Zhou K S, Kuang M, et al. Microstructural characterization and properties of selective laser melted maraging steel with different build directions [J]. Sci. Technol. Adv. Mater., 2018, 19: 746
[44] Cao R C. Study on the fabrication process of 18Ni300 maraging steel by selective laser melting and the experimental analysis on laser melting of metal powders [D]. Shanghai: Shanghai Jiaotong University, 2014
[44] (曹润辰. 18Ni300马氏体时效钢选区激光熔化工艺及金属粉末激光熔化实验研究 [D]. 上海: 上海交通大学, 2014)
[45] Kang K. 18Ni-300 powder characteristics used in selective laser melting and microstructure of selective laser melted 18Ni-300 steel [D]. Chongqing: Chongqing University, 2014
[45] (康 凯. 选区激光成形用18Ni-300粉末特性及成形件组织结构的研究 [D]. 重庆: 重庆大学, 2014)
[46] Zhou Y Y, Wang F, Xue C. Microstructure and mechanical properties of 3D printing 18Ni300 die steel [J]. Phys. Test. Chem. Analy. Part A: Phys. Test., 2016, 52: 243
[46] (周隐玉, 王 飞, 薛 春. 3D打印18Ni300模具钢的显微组织及力学性能 [J]. 理化检验(物理分册), 2016, 52: 243)
[47] Tan C L, Zhou K S, Tong X, et al. Microstructure and mechanical properties of 18Ni-300 maraging steel fabricated by selective laser melting [A]. Proceedings of the 2016 6th International Conference on Advanced Design and Manufacturing Engineering [C]. Atlantis Press, 2016: 404
[48] Tan C L. Selective laser melting of maraging steel and its composite, gradient materials [D]. Guangzhou: South China University of Technology, 2019
[48] (谭超林. 选区激光熔化成型马氏体时效钢及其复合、梯度材料研究 [D]. 广州: 华南理工大学, 2019)
[49] Bai Y C, Yang Y Q, Wang D, et al. Influence mechanism of parameters process and mechanical properties evolution mechanism of maraging steel 300 by selective laser melting [J]. Mater. Sci. Eng., 2017, A703: 116
[50] Bai Y C. Research on the mechanism and properties controllability of selective laser melting of maraging steel [D]. Guangzhou: South China University of Technology, 2018
[50] (白玉超. 马氏体时效钢激光选区熔化成型机理及其控性研究 [D]. 广州: 华南理工大学, 2018)
[51] Yasa E, Kempen K, Kruth J, et al. Microstructure and mechanical properties of maraging steel 300 after selective laser melting [A]. Proceedings of the 21st International Solid Freeform Fabrication Symposium [C]. Austin, Texas, USA, 2010: 383
[52] Casalino G, Campanelli S L, Contuzzi N, et al. Experimental investigation and statistical optimisation of the selective laser melting process of a maraging steel [J]. Opt. Laser Technol., 2015, 65: 151
[53] Demir A G, Previtali B. Investigation of remelting and preheating in SLM of 18Ni300 maraging steel as corrective and preventive measures for porosity reduction [J]. Int. J. Adv. Manuf. Technol., 2017, 93: 2697
[54] Mutua J, Nakata S, Onda T, et al. Optimization of selective laser melting parameters and influence of post heat treatment on microstructure and mechanical properties of maraging steel [J]. Mater. Des., 2018, 139: 486
[55] Suryawanshi J, Prashanth K G, Tensile Ramamurty U. Tensile, fracture, and fatigue crack growth properties of a 3D printed maraging steel through selective laser melting [J]. J. Alloys Compd.,2017, 725: 355
[56] Kempen K, Yasa E, Thijs L, et al. Microstructure and mechanical properties of selective laser melted 18Ni-300 steel [J]. Phys. Procedia, 2011, 12: 255
[57] Yin S, Chen C Y, Yan X C, et al. The influence of aging temperature and aging time on the mechanical and tribological properties of selective laser melted maraging 18Ni-300 steel [J]. Addit. Manuf., 2018, 22: 592
[58] Casati R, Lemke J N, Tuissi A, et al. Aging behaviour and mechanical performance of 18-Ni 300 steel processed by selective laser melting [J]. Metals, 2016, 6: 218
[59] SAE AMS 6514J. Steel, maraging, bars, forgings, tubing, and rings 18.5Ni-9.0Co-4.9Mo-0.65Ti-0.10Al consumable electrode vacuum melted, annealed [S], 2005
[60] Mooney B, Kourousis K I, Raghavendra R. Plastic anisotropy of additively manufactured maraging steel: Influence of the build orientation and heat treatments [J]. Addit. Manuf., 2019, 25: 19
[61] Bhardwaj T, Shukla M. Effect of laser scanning strategies on texture, physical and mechanical properties of laser sintered maraging steel [J]. Mater. Sci. Eng., 2018, A734: 102
[62] Croccolo D, De Agostinis M, Fini S, et al. Influence of the build orientation on the fatigue strength of EOS maraging steel produced by additive metal machine [J]. Fatigue Fract. Eng. Mater. Struct., 2016, 39: 637
[63] J?gle E A, Sheng Z D, Wu L, et al. Precipitation reactions in age-hardenable alloys during laser additive manufacturing [J]. JOM, 2016, 68: 943
[64] J?gle E A, Sheng Z D, Kürnsteiner P, et al. Comparison of maraging steel micro-and nanostructure produced conventionally and by laser additive manufacturing [J]. Materials (Basel), 2016, 10: 8
[65] Sha W, Cerezo A, Smith G D W. Phase chemistry and precipitation reactions in maraging steels: Part IV. Discussion and conclusions [J]. Metall. Mater. Trans., 1993, 24A: 1251
[66] Xu W, Rivera-Díaz-del-Castillo P E J, Wang W, et al. Genetic design and characterization of novel ultra-high-strength stainless steels strengthened by Ni3Ti intermetallic nanoprecipitates [J]. Acta Mater., 2010, 58: 3582
[67] Menapace C, Lonardelli I, Molinari A. Phase transformation in a nanostructured M300 maraging steel obtained by SPS of mechanically alloyed powders [J]. J. Thermal Anal. Calorim., 2010, 101: 815
[68] He Y, Yang K, Liu K, et al. Age hardening and mechanical properties of a 2400 MPa grade cobalt-free maraging steel [J]. Metall. Mater. Trans., 2006, 37A: 1107
[69] Gladman T. Precipitation hardening in metals [J]. Mater. Sci. Technol., 1999, 15: 30
[70] Bhavar V, Kattire P, Patil V, et al. A review on powder bed fusion technology of metal additive manufacturing [A] Proceedings of the 4th International Conference and Exhibition on Additive Manufacturing Technologies-AM-2014 [C]. Bangalore, India: CRC Press, 2014: 1
[71] System data sheet EOS M400 [M]. .2019
[72] Technical Data EOS M 400-4 [M].
[73] Tan C L, Zhou K S, Ma W Y, et al. Interfacial characteristic and mechanical performance of maraging steel-copper functional bimetal produced by selective laser melting based hybrid manufacture [J]. Mater. Des., 2018, 155: 77
[74] Wei P, Wei Z Y, Chen Z, et al. The AlSi10Mg samples produced by selective laser melting: Single track, densification, microstructure and mechanical behavior [J]. Appl. Surf. Sci., 2017, 408: 38
[75] Arafune K, Hirata A. Thermal and solutal marangoni convection in In-Ga-Sb system [J]. J. Cryst. Growth, 1999, 197: 811
[76] Zhang Z H, Zhou H, Ren L Q, et al. Surface morphology of laser tracks used for forming the non-smooth biomimetic unit of 3Cr2W8V steel under different processing parameters [J]. Appl. Surf. Sci., 2008, 254: 2548
[77] Cyr E, Asgari H, Shamsdini S, et al. Fracture behaviour of additively manufactured MS1-H13 hybrid hard steels [J]. Mater. Lett., 2018, 212: 174
[78] Shi Y S. The industrial application and industrialization development of 3D printing technology [J]. Mach. Des. Manuf. Eng., 2016, 45(2): 11
[78] (史玉升. 3D打印技术的工业应用及产业化发展 [J]. 机械设计与制造工程, 2016, 45(2): 11)
[79] Mazur M, Brincat P, Leary M, et al. Numerical and experimental evaluation of a conformally cooled H13 steel injection mould manufactured with selective laser melting [J]. Int. J. Adv. Manuf. Technol., 2017, 93: 881
[80] Bai Y C, Yang Y Q, Xiao Z F, et al. Selective laser melting of maraging steel: Mechanical properties development and its application in mold [J]. Rapid Prototyp. J., 2018, 24: 623
[81] Liu W J. Research on design and manufacture of injection mold with conformal cooling channel based on selective laser melting [D]. Chongqing: Chongqing University, 2017
[81] (刘卫军. 基于选择性激光熔化成型技术的随形冷却流道注塑模具的设计制造研究 [D]. 重庆: 重庆大学, 2017)
[1] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[2] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[3] 唐伟能, 莫宁, 侯娟. 增材制造镁合金技术现状与研究进展[J]. 金属学报, 2023, 59(2): 205-225.
[4] 戚钊, 王斌, 张鹏, 刘睿, 张振军, 张哲峰. 应力比对含缺陷选区激光熔化TC4合金稳态疲劳裂纹扩展速率的影响[J]. 金属学报, 2023, 59(10): 1411-1418.
[5] 卢海飞, 吕继铭, 罗开玉, 鲁金忠. 激光热力交互增材制造Ti6Al4V合金的组织及力学性能[J]. 金属学报, 2023, 59(1): 125-135.
[6] 彭立明, 邓庆琛, 吴玉娟, 付彭怀, 刘子翼, 武千业, 陈凯, 丁文江. 镁合金选区激光熔化增材制造技术研究现状与展望[J]. 金属学报, 2023, 59(1): 31-54.
[7] 王孟, 杨永强, Trofimov Vyacheslav, 宋长辉, 周瀚翔, 王迪. 粉末粒径对AlSi10Mg合金选区激光熔化成形的影响[J]. 金属学报, 2023, 59(1): 147-156.
[8] 祝国梁, 孔德成, 周文哲, 贺戬, 董安平, 疏达, 孙宝德. 选区激光熔化 γ' 相强化镍基高温合金裂纹形成机理与抗裂纹设计研究进展[J]. 金属学报, 2023, 59(1): 16-30.
[9] 杨超, 卢海洲, 马宏伟, 蔡潍锶. 选区激光熔化NiTi形状记忆合金研究进展[J]. 金属学报, 2023, 59(1): 55-74.
[10] 杨天野, 崔丽, 贺定勇, 黄晖. 选区激光熔化AlSi10Mg-Er-Zr合金微观组织及力学性能强化[J]. 金属学报, 2022, 58(9): 1108-1117.
[11] 刘广, 陈鹏, 姚锡禹, 陈朴, 刘星辰, 刘朝阳, 严明. CrMoTi中熵合金的性能及其原位合金化增材制造[J]. 金属学报, 2022, 58(8): 1055-1064.
[12] 耿遥祥, 唐浩, 许俊华, 张志杰, 喻利花, 鞠洪博, 江乐, 简江林. 选区激光熔化高强Al-(Mn, Mg)-(Sc, Zr)合金成形性及力学性能[J]. 金属学报, 2022, 58(8): 1044-1054.
[13] 林研, 司丞, 徐京豫, 刘泽, 张诚, 柳林. 选区激光熔化高强韧铝合金的异质结构调控及力学性能[J]. 金属学报, 2022, 58(11): 1509-1518.
[14] 王凯冬, 刘允中, 詹强坤, 黄斌. 形核剂的添加方式对选区激光熔化成形含锆Al-Cu-Mg合金显微组织与力学性能的影响[J]. 金属学报, 2022, 58(10): 1281-1291.
[15] 王文权, 王苏煜, 陈飞, 张新戈, 徐宇欣. 选区激光熔化成形TiN/Inconel 718复合材料的组织和力学性能[J]. 金属学报, 2021, 57(8): 1017-1026.