Please wait a minute...
金属学报  2019, Vol. 55 Issue (9): 1175-1184    DOI: 10.11900/0412.1961.2019.00126
  综述 本期目录 | 过刊浏览 |
高温合金涡轮叶片定向凝固过程数值模拟研究进展
许庆彦(),杨聪,闫学伟,柳百成
清华大学材料学院先进成形制造教育部重点实验室 北京 100084
Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
清华大学材料学院先进成形制造教育部重点实验室 北京 100084
Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
清华大学材料学院先进成形制造教育部重点实验室 北京 100084
Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
清华大学材料学院先进成形制造教育部重点实验室 北京 100084
Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
Development of Numerical Simulation in Nickel-Based Superalloy Turbine Blade Directional Solidification
XU Qingyan(),YANG Cong,YAN Xuewei,LIU Baicheng
引用本文:

许庆彦,杨聪,闫学伟,柳百成. 高温合金涡轮叶片定向凝固过程数值模拟研究进展[J]. 金属学报, 2019, 55(9): 1175-1184.
Qingyan XU, Cong YANG, Xuewei YAN, Baicheng LIU. Development of Numerical Simulation in Nickel-Based Superalloy Turbine Blade Directional Solidification[J]. Acta Metall Sin, 2019, 55(9): 1175-1184.

全文: PDF(16856 KB)   HTML
摘要: 

高温合金涡轮叶片被广泛应用于航空发动机与燃气轮机,数值模拟技术能优化和改进涡轮叶片定向凝固工艺,提高成品率。本文总结了国内外高温合金涡轮叶片定向凝固过程宏、微观数值模拟模型,介绍了其发展趋势。对高速凝固(HRS)和液态金属冷却(LMC) 2种工艺下高温合金叶片宏观温度场、介观晶粒组织与微观枝晶组织做了模拟仿真,对比分析了2种定向凝固工艺下的传热过程和微观组织演化规律。介绍了变抽拉速率工艺在高温合金定向凝固中的应用,以实际叶片作为算例,对比了常抽拉速率与优化的变抽拉速率对涡轮叶片温度场、晶粒组织的影响。结果表明,优化的变抽拉速率工艺能够改变上凸或者下凹的糊状区形状,得到平直的糊状区与平行的晶粒组织,有利于提升叶片高温力学性能。

关键词 高温合金数值模拟定向凝固涡轮叶片    
Abstract

Ni-based superalloy turbine blades have been widely used in aerospace and industrial engine. Numerical simulation techniques can optimize the superalloy directional solidification process and enhance the rate of finished products. This paper summarized the existing macroscopic and microscopic numerical models in the superalloy blade directional solidification process. Simulations have been done on the temperature field evolution, grain structure and dendrite morphology in typical HRS and LMC directional solidification conditions, and the resulting microstructure features were investigated. In particular, the application of varying withdrawal rate in directional solidification of the superalloy blade was introduced. And the advantages of the varying withdrawal rate technique were emphasized by comparing it with the constant withdrawal rate method. The simulation results indicate that by applying varying withdrawal rate, the convex or concave shape of the mushy zone can be change to flat shape, so that parallel columnar grains can be obtained with enhanced high-temperature performance of the turbine blade.

Key wordssuperalloy    numerical simulation    directional solidification    turbine blade
收稿日期: 2019-04-23     
ZTFLH:  TG132  
基金资助:国家科技重大专项项目(2017ZX04014001,2017-VII-0008-0101);国家重点研发计划项目(2017YFB0701503);国家自然科学基金项目(51374137)
作者简介: 许庆彦,男,1971年生,教授,博士
图1  高速凝固(HRS)和液态金属冷(LMC)却定向凝固炉简化结构示意图
图2  HRS与LMC定向凝固条件下单晶试板温度场模拟结果
图3  恒定拉速与变拉速条件下叶片温度场模拟结果[31]
图4  单晶高温合金凝固过程自然对流模拟与雀斑缺陷预测
图5  HRS与LMC定向凝固条件下选晶过程晶粒组织模拟结果与实验结果对比
图6  变抽拉速率定向凝固条件下,涡轮叶片温度场与晶粒组织模拟结果
图7  定向凝固过程枝晶竞争生长过程相场模拟结果
图8  HRS和LMC定向凝固工艺下三维枝晶生长模拟结果[31]
[1] VersnyderF I, ShankM E. The development of columnar grain and single crystal high temperature materials through directional solidification [J]. Mater. Sci. Eng., 1970, 6: 213
[2] GiameiA F, TschinkelJ G. Liquid metal cooling: A new solidification technique [J]. Metall. Trans., 1976, 7A: 1427
[3] YangX L,DongH B, WangW, , et al. Microscale simulation of stray grain formation in investment cast turbine blades [J]. Mater. Sci. Eng., 2004, A386: 129
[4] MaD X. Freckle formation during directional solidification of complex castings of superalloys [J]. Acta Metall. Sin., 2016, 52: 426
[4] 马德新. 定向凝固的复杂形状高温合金铸件中的雀斑形成 [J]. 金属学报, 2016, 52: 426
[5] AvesonJ W, TennantP A, FossB J, , et al. On the origin of sliver defects in single crystal investment castings [J]. Acta Mater., 2013, 61: 5162
[6] ElliottA J, PollockT M. Thermal analysis of the bridgman and liquid-metal-cooled directional solidification investment casting processes [J]. Metall. Mater. Trans., 2007, 38A: 871
[7] BeckermannC, GuJ P, BoettingerW J. Development of a freckle predictor via Rayleigh number method for single-crystal nickel-base superalloy castings [J]. Metall. Mater. Trans., 2000, 31A: 2545
[8] RamirezJ C, BeckermannC. Evaluation of a Rayleigh-number-based freckle criterion for Pb-Sn alloys and Ni-base superalloys [J]. Metall. Mater. Trans., 2003, 34A: 1525
[9] GandinC A, DesbiollesJ L, RappazM, , et al. A three-dimensional cellular automation-finite element model for the prediction of solidification grain structures [J]. Metall. Mater. Trans., 1999, 30A: 3153
[10] RappazM, GandinC A. Probabilistic modelling of microstructure formation in solidification processes [J]. Acta Metall. Mater., 1993, 41: 345
[11] XuQ Y, ZhangH, QiX, , et al. Multiscale modeling and simulation of directional solidification process of turbine blade casting with MCA method [J]. Metall. Mater. Trans., 2014, 45B: 555
[12] LiuS Z, LiJ R, TangD Z, , et al. Numerical simulation of directional solidification process of single crystal superalloys [J]. J. Mater. Eng., 1999, (7): 40
[12] 刘世忠, 李嘉荣, 唐定忠等. 单晶高温合金定向凝固过程数值模拟 [J]. 材料工程, 1999, (7): 40)
[13] PanD, XuQ Y, LiuB C. Modeling on directional solidification of superalloy blades with furnace wall temperature evolution [J]. Acta Metall. Sin., 2010, 46: 294
[13] 潘 冬, 许庆彦, 柳百成. 考虑炉壁温度变化的高温合金叶片定向凝固过程模拟 [J]. 金属学报, 2010, 46: 294
[14] ZhangH, XuQ Y, SunC B, , et al. Simulation and experimental studies on grain selection behavior of single crystal superalloy: I. Starter block [J]. Acta Metall. Sin., 2013, 49: 1508
[14] 张 航, 许庆彦, 孙长波等. 单晶高温合金螺旋选晶过程的数值模拟与实验研究: I.引晶段 [J]. 金属学报, 2013, 49: 1508
[15] ZhangH, XuQ Y, SunC B, , et al. Simulation and experimental studies on grain selection behavior of single crystal superalloy: II. Spiral part [J]. Acta Metall. Sin., 2013, 49: 1521
[15] 张 航, 许庆彦, 孙长波等. 单晶高温合金螺旋选晶过程的数值模拟与实验研究: II.螺旋段 [J]. 金属学报, 2013, 49: 1521
[16] WangW, LeeP D, McLeanM. A model of solidification microstructures in nickel-based superalloys: Predicting primary dendrite spacing selection [J]. Acta Mater., 2003, 51: 2971
[17] LiJ J, WangZ J, WangY Q, , et al. Phase-field study of competitive dendritic growth of converging grains during directional solidification [J]. Acta Mater., 2012, 60: 1478
[18] WangJ C, GuoC W, LiJ J, , et al. Recent progresses in competitive grain growth during directional solidification [J]. Acta Metall. Sin., 2018, 54: 657
[18] 王锦程, 郭春文, 李俊杰等. 定向凝固晶粒竞争生长的研究进展 [J]. 金属学报, 2018, 54: 657
[19] WarnkenN, MaD X, DrevermannA, , et al. Phase-field modelling of as-cast microstructure evolution in nickel-based superalloys [J]. Acta Mater., 2009, 57: 5862
[20] FangH, XueH, TangQ Y, , et al. Dendrite coarsening and secondary arm migration in the mushy zone during directional solidification [J]. Acta Metall. Sin., 2019, 55: 664
[20] 方 辉, 薛 桦, 汤倩玉等. 定向凝固糊状区枝晶粗化和二次臂迁移的实验和模拟 [J]. 金属学报, 2019, 55: 664
[21] KermanpurA, RappazM, VarahramN, , et al. Thermal and grain-structure simulation in a land-based turbine blade directionally solidified with the liquid metal cooling process [J]. Metall. Mater. Trans., 2000, 31B: 1293
[22] CuiK, XuQ Y, YuJ, , et al. Radiative heat transfer calculation for superalloy turbine blade in directional solidification process [J]. Acta Metall. Sin., 2007, 43: 465
[22] 崔 锴,许庆彦,于 靖等. 高温合金叶片定向凝固过程中辐射换热的计算 [J]. 金属学报, 2007, 43: 465
[23] YanX W, TangN, LiuX F, , et al. Modeling and simulation of directional solidification by LMC process for nickel base superalloy casting [J]. Acta Metall. Sin., 2015, 51: 1288
[23] 闫学伟, 唐 宁, 刘孝福等. 镍基高温合金铸件液态金属冷却定向凝固建模仿真及工艺规律研究 [J]. 金属学报, 2015, 51: 1288
[24] YuanL, LeeP D. A new mechanism for freckle initiation based on microstructural level simulation [J]. Acta Mater., 2012, 60: 4917
[25] ChenY, BognoA A, XiaoN M, , et al. Quantitatively comparing phase-field modeling with direct real time observation by synchrotron X-ray radiography of the initial transient during directional solidification of an Al-Cu alloy [J]. Acta Mater., 2012, 60: 199
[26] ThévozP, DesbiollesJ L, RappazM. Modeling of equiaxed microstructure formation in casting [J]. Metall. Trans., 1989, 20A: 311
[27] KurzW, GiovanolaB, TrivediR. Theory of microstructural development during rapid solidification [J]. Acta Metall., 1986, 34: 823
[28] SteinbachI, PezzollaF. A generalized field method for multiphase transformations using interface fields [J]. Physica, 1999, 134D: 385
[29] EikenJ, B?ttgerB, SteinbachI. Multiphase-field approach for multicomponent alloys with extrapolation scheme for numerical application [J]. Phys. Rev., 2006, 73E: 066122
[30] YangC, XuQ Y, LiuB C. Primary dendrite spacing selection during directional solidification of multicomponent nickel-based superalloy: Multiphase-field study [J]. J. Mater. Sci., 2018, 53: 9755
[31] XuQ Y, YangC, ZhangH, , et al. Multiscale modeling and simulation of directional solidification process of Ni-based superalloy turbine blade casting [J]. Metals, 2018, 8: 632
[32] ElliottA J, PollockT M, TinS, , et al. Directional solidification of large superalloy castings with radiation and liquid-metal cooling: A comparative assessment [J]. Metall. Mater. Trans., 2004, 35A: 3221
[33] ZhangH, XuQ Y, LiuB C. Numerical simulation and optimization of directional solidification process of single crystal superalloy casting [J]. Materials, 2014, 7: 1625
[34] ZhuM F, TangQ Y, ZhangQ Y, , et al. Cellular automaton modeling of micro-structure evolution during alloy solidification [J]. Acta Metall. Sin., 2016, 52: 1297
[34] 朱鸣芳, 汤倩玉, 张庆宇等. 合金凝固过程中显微组织演化的元胞自动机模拟 [J]. 金属学报, 2016, 52: 1297
[35] ShibutaY, SakaneS, TakakiT, , et al. Submicrometer-scale molecular dynamics simulation of nucleation and solidification from undercooled melt: Linkage between empirical interpretation and atomistic nature [J]. Acta Mater., 2016, 105: 328
[1] 江河, 佴启亮, 徐超, 赵晓, 姚志浩, 董建新. 镍基高温合金疲劳裂纹急速扩展敏感温度及成因[J]. 金属学报, 2023, 59(9): 1190-1200.
[2] 马德新, 赵运兴, 徐维台, 王富. 重力对高温合金定向凝固组织的影响[J]. 金属学报, 2023, 59(9): 1279-1290.
[3] 陈佳, 郭敏, 杨敏, 刘林, 张军. 新型钴基高温合金中W元素对蠕变组织和性能的影响[J]. 金属学报, 2023, 59(9): 1209-1220.
[4] 李嘉荣, 董建民, 韩梅, 刘世忠. 吹砂对DD6单晶高温合金表面完整性和高周疲劳强度的影响[J]. 金属学报, 2023, 59(9): 1201-1208.
[5] 王磊, 刘梦雅, 刘杨, 宋秀, 孟凡强. 镍基高温合金表面冲击强化机制及应用研究进展[J]. 金属学报, 2023, 59(9): 1173-1189.
[6] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[7] 赵鹏, 谢光, 段慧超, 张健, 杜奎. 两种高代次镍基单晶高温合金热机械疲劳中的再结晶行为[J]. 金属学报, 2023, 59(9): 1221-1229.
[8] 冯强, 路松, 李文道, 张晓瑞, 李龙飞, 邹敏, 庄晓黎. γ' 相强化钴基高温合金成分设计与蠕变机理研究进展[J]. 金属学报, 2023, 59(9): 1125-1143.
[9] 白佳铭, 刘建涛, 贾建, 张义文. WTa型粉末高温合金的蠕变性能及溶质原子偏聚[J]. 金属学报, 2023, 59(9): 1230-1242.
[10] 毕中南, 秦海龙, 刘沛, 史松宜, 谢锦丽, 张继. 高温合金锻件残余应力量化表征及控制技术研究进展[J]. 金属学报, 2023, 59(9): 1144-1158.
[11] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[12] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[13] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[14] 穆亚航, 张雪, 陈梓名, 孙晓峰, 梁静静, 李金国, 周亦胄. 基于热力学计算与机器学习的增材制造镍基高温合金裂纹敏感性预测模型[J]. 金属学报, 2023, 59(8): 1075-1086.
[15] 刘兴军, 魏振帮, 卢勇, 韩佳甲, 施荣沛, 王翠萍. 新型钴基与Nb-Si基高温合金扩散动力学研究进展[J]. 金属学报, 2023, 59(8): 969-985.