Please wait a minute...
金属学报  2019, Vol. 55 Issue (9): 1145-1159    DOI: 10.11900/0412.1961.2019.00088
  综述 本期目录 | 过刊浏览 |
镍基铸造高温合金等轴晶凝固成形技术的研究和进展
张军1(),介子奇1,2,黄太文1,杨文超1,刘林1,傅恒志1
1. 西北工业大学凝固技术国家重点实验室 西安 710072
2. 西安工业大学材料与化工学院 西安 710021
Research and Development of Equiaxed Grain Solidification and Forming Technology for Nickel-Based Cast Superalloys
ZHANG Jun1(),JIE Ziqi1,2,HUANG Taiwen1,YANG Wenchao1,LIU Lin1,FU Hengzhi1
1. State Key Laborotory of Solidification Processing, Northwestern Polytechnical University, Xi’an 710072, China
2. School of Materials Science and Chemical Engineering, Xi'an Technological University, Xi'an 710021, China
引用本文:

张军,介子奇,黄太文,杨文超,刘林,傅恒志. 镍基铸造高温合金等轴晶凝固成形技术的研究和进展[J]. 金属学报, 2019, 55(9): 1145-1159.
Jun ZHANG, Ziqi JIE, Taiwen HUANG, Wenchao YANG, Lin LIU, Hengzhi FU. Research and Development of Equiaxed Grain Solidification and Forming Technology for Nickel-Based Cast Superalloys[J]. Acta Metall Sin, 2019, 55(9): 1145-1159.

全文: PDF(25770 KB)   HTML
摘要: 

等轴晶镍基铸造高温合金具有制造成本低、中低温力学性能优异等优点,被广泛应用于航空航天等领域。航空发动机机匣是典型的中低温条件下使用的等轴晶高温合金铸件,结构复杂化、尺寸精确化和薄壁轻量化是其发展趋势,而精确成形和凝固组织的协同控制是实现这类铸件精密铸造的重大技术难题。与之相对应,对高温合金整体结构铸件的材料、铸造技术、组织控制和力学性能的要求也越来越高。本文结合近年来课题组承担的相关科研工作,从铸造高温合金的发展和应用、组织控制方法、计算模拟及新型工艺等方面,介绍了等轴晶镍基铸造高温合金及其凝固和成形技术的相关研究和进展。

关键词 镍基铸造高温合金等轴晶凝固成形晶粒细化计算模拟    
Abstract

Equiaxed grain cast superalloys are widely used in aeroengine and other fields due to their low manufacturing cost and excellent mechanical properties at medium and low temperatures. Aeroengine casing is a typical complex thin-walled equiaxed superalloy castings used at medium and low temperatures. The complex thin-walled superalloy investment castings with the complex structures, the accurate size and the lightweight are the key components for advanced aeroengines. The coordinated control of the precise forming and the solidification microstructure for these castings is very difficult. Correspondingly, the requirements for materials, casting technologies, structure controls and mechanical properties in superalloy integral structure castings are becoming increasingly higher. In this paper, the development and application of polycrystalline superalloys, solidification and forming, the simulations and the new technologies are reviewed.

Key wordsNi-based cast superalloy    equiaxed grain    solidification and forming    grain refinement    computation simulation
收稿日期: 2019-04-01     
ZTFLH:  TG21  
基金资助:国家重点研发计划项目(2016YFB0701400、2017YFB0702900);国家自然科学基金项目(51631008、51690163、51771148);中央高校基本科研业务费项目(3102017ZY054、3102018JCC009)
作者简介: 张 军,男,1967年生,教授
图1  浇注温度和微量元素对K4169高温合金流动性的影响[14]
图2  熔体过热温度对Ni-Cr-W高温合金结构因子的影响[30]
图3  熔体过热温度对高温合金熔体黏度和表面张力的影响[35]
图4  熔体过热温度对K4169高温合金形核过冷度的影响[38]
图5  熔体过热温度对K4169合金晶粒组织的影响[38]
图6  热控凝固示意图及对特征铸件组织的影响[14]
图7  不同工艺条件下IN100高温合金的宏观晶粒组织[60]
RefinerCrystal structurea / nmAlloyRef.
Co2AlO4fcc0.8130IN713, K4169[62]
NiAlTifccK4169, K403[63]
TiNfcc0.4187K403, K4169[64]
TiBfcc0.4187IN713, MAR-M246[65]
WO2fccNimonic[65]
Ni3Alfcc0.3561IN718, IN713[65]
NbCbcc0.4471IN718, IN713[65]
Ni-W-10Y2O3bcc1.060Ni(Fe)-W[66]
表1  高温合金细化剂[62,63,64,65,66]
图8  常规工艺和热控凝固条件下细化剂对晶粒组织的影响[68]
图9  化学细化剂与Ni晶粒之间的取向关系及其异质形核机制[69]
图10  相场模拟得到的950 ℃、300 MPa蠕变条件下γ'相的演化过程[91]
图11  相场模拟得到的950 ℃、300 MPa蠕变条件下的蠕变曲线[91]
图12  反重力低压惰性气体保护铸造工艺及其成形铸件[95]
图13  增材制造在高温合金中应用[103,104,105]
[1] ChenW H, ChenR Z. Development of aerospace investment casting technique [J]. J. Aeronaut. Mater., 1992, 12(1): 57
[1] 陈婉华, 陈荣章. 宇航熔模铸造技术的发展 [J]. 航空材料学报, 1992, 12(1): 57)
[2] XiongY C. Basic research of precision forming technology of aviation complex components [J]. Aeronaut. Manuf. Technol., 2010, (2): 54
[2] 熊艳才. 航空复杂构件精确成形技术基础研究 [J]. 航空制造技术, 2010, (2): 54)
[3] YuanW M, ChenR Z. Precision casting technology for large thin wall Superalloy integral castings [J]. Aeronaut. Manuf. Eng., 1997, (1): 15
[3] 袁文明, 陈荣章. 高温合金大型薄壁整体铸件精铸技术的发展 [J]. 航空制造工程, 1997, (1): 15)
[4] GuoJ T. Review on whrought superalloy and equiaxed crystal cast superalloy materials and their application basic theories [J]. Acta Metall. Sin., 2010, 46: 1303
[4] 郭建亭. 变形高温合金和等轴晶铸造高温合金材料与应用基础理论研究 [J]. 金属学报, 2010, 46: 1303
[5] China Aviation Materials Manual Editorial Committee. China Aeronautical Materials Handbook [M]. 2nd Ed., Beijing: Standards Press of China, 2001: 689
[5] (中国航空材料手册编委会. 中国航空材料手册 [M].第2版, 北京: 中国标准出版社, 2001: 689)
[6] MotturaA, WarnkenN, MillerM K, , et al. Atom probe tomography analysis of the distribution of rhenium in nickel alloys [J]. Acta Mater., 2010, 58: 931
[7] DingQ Q, LiS Z, ChenL Q, , et al. Re segregation at interfacial dislocation network in a nickel-based superalloy [J]. Acta Mater., 2018, 154: 137
[8] TangY L, HuangM, XiongJ C, , et al. Evolution of superdislocation structures during tertiary creep of a nickel-based single-crystal superalloy at high temperature and low stress [J]. Acta Mater., 2017, 126: 336
[9] ZhangJ, LouL H. Basic Research in development and application of cast superalloy [J]. Acta Metall. Sin., 2018, 54: 1637
[9] 张 健, 楼琅洪. 铸造高温合金研发中的应用基础研究 [J]. 金属学报, 2018, 54: 1637
[10] CowlesB, BackmanD, DuttonR. Verification and validation of ICME methods and models for aerospace applications [J]. Integr. Mater. Manuf. Innovat., 2012, 1: 2
[11] StewartC A, RheinR K, SuzukiA, , et al. Oxide scale formation in novel γ-γ' cobalt-based alloys [A]. Proceedings of the 13th International Symposium on Superalloys [C]. Warrendale, PA: TMS, 2016: 991
[12] KirklinS, SaalJ E, HegdeV I, , et al. High-throughput computational search for strengthening precipitates in alloys [J]. Acta Mater., 2016, 102: 125
[13] KennedyR L. Allvac 718plus, superalloy for the next forty years [A]. Superalloys 718, 625, 706 and Derivatives 2005 [C]. Warrendale, PA: TMS, 2005: 1
[14] JieZ Q. Influence of trace element and melt treatment on microstructure and property of K4169 superalloy [D]. Xi'an: Northwestern Polytechnical University, 2018
[14] 介子奇. 微量元素及熔体处理对K4169高温合金组织和性能的影响 [D]. 西安: 西北工业大学, 2018
[15] NiuJ P, YangK N, SunX F, , et al. Investigation on deoxidation during VIM refining Ni-base superalloy by using CaO crucible [J]. Acta Metall. Sin., 2002, 38: 303
[15] 牛建平, 杨克努, 孙晓峰等. 用CaO坩埚真空感应熔炼镍基高温合金脱氧研究 [J]. 金属学报, 2002, 38: 303
[16] ChenF W, HuangX B, WangY, , et al. Investigation on foam ceramic filter to remove inclusions in revert superalloy [J]. Mater. Lett., 1998, 34: 372
[17] GuiZ L. Development of nickel-based superalloy technology [J]. Aeronaut. Manuf. Eng., 1995, (4): 12
[17] 桂忠楼. 镍基高温合金BTOP工艺的发展 [J]. 航空制造工程, 1995, (4): 12)
[18] NiuJ P. Preparation Technology of Pure Steel and Superalloy [M]. Beijing: Metallurgical Industry Press, 2009: 35
[18] 牛建平. 纯净钢及高温合金制备技术 [M]. 北京: 冶金工业出版社, 2009: 35)
[19] ZhangK R. Homogeneous microstructure of bulk K4169 superalloy obtained by stable undercooling [D]. Xi'an: Northwestern Polytechnical University, 2015
[19] 张可人. K4169高温合金大体积深过冷凝固与力学性能研究 [D]. 西安: 西北工业大学, 2015
[20] HosamaniL. Method of casting a metal article [P]. Europe Pat, 0711215B1, 2002
[21] DongA P, YanN S, ZhangJ, , et al. Investigation of thin-walled IN718 castings by counter-gravity investment casting [A]. Advances in the Science and Engineering of Casting Solidification [C]. New York: Springer, 2015: 399
[22] DebroyT, WeiH L, ZubackJ S, , et al. Additive manufacturing of metallic components-process, structure and properties [J]. Prog. Mater. Sci., 2018, 92: 112
[23] TyagunovA G, BaryshevE E, KostinaT K, , et al. Thermal stability of the structure of a high-temperature nickel alloy fabricated by two different technologies [J]. Met. Sci. Heat Treat., 1999, 41: 538
[24] KolotukhinE V, TjagunovG V. Crystallization of superalloys with various contents of carbon [J]. J. Mater. Proc. Technol., 1995, 53: 219
[25] BalakinY A, GladkovM I. Thermodynamic analysis of high-temperature treatment of metallic melts: Part I [J]. Russ. Metall., 2008, 2008: 611
[26] BalakinY A, GladkovM I. Thermodynamic analysis of high-temperature treatment of metallic melts: Part II [J]. Russ. Metall., 2008, 2008: 730
[27] YinF S, SunX F, GuanH R, , et al. Effect of thermal history on the liquid structure of a cast nickel-base superalloy M963 [J]. J. Alloys Compd., 2004, 364: 225
[28] WangZ, LiJ G, ZhaoN R, , et al. Effect of the melt treatment temperature on the melt structure and microstructure of a nickel based single crystal superalloy [J]. Acta Metall. Sin., 2002, 38: 920
[28] 王 震, 李金国, 赵乃仁等. 熔体处理温度对镍基单晶高温合金熔体结构和凝固组织的影响 [J]. 金属学报, 2002, 38: 920
[29] Calvo-DahlborgM, PopelP S, KramerM J, , et al. Superheat-dependent microstructure of molten Al-Si alloys of different compositions studied by small angle neutron scattering [J]. J. Alloys Compd., 2013, 550: 9
[30] GaoZ T, HuR, WangJ, , et al. Heredity of medium-range order structure from melts to the microstructure of Ni-Cr-W superalloy [J]. Appl. Phys., 2015, 120A: 183
[31] ZuF Q, ZhuZ G, GuoL J, , et al. Observation of an anomalous discontinuous liquid-structure change with temperature [J]. Phys. Rev. Lett., 2002, 89: 125505
[32] MaJ B, ChenS H, DaiY B, , et al. The local structure of molten Ni1-xAlx: An ab initio molecular dynamics study [J]. J. Non-Cryst. Solids, 2015, 425: 11
[33] KurakovaN V, MolokanovV V, SterkhovaI V, , et al. Effect of the state of a melt on the glass-forming ability, structure, and properties of a melt-quenched bulk amorphous nickel-based alloy [J]. Russ. Metall., 2007, 2007: 519
[34] BodakinN E, BaumB A, KostinaT K. Effect of melting conditions on the thermal expansion coefficient of alloy 36N [J]. Met. Sci. Heat Treat., 1979, 21: 323
[35] BaryshevE E, TyagunovG V, BaumB A, , et al. The influence of melt state on atomization process and quality of powders on iron and nickel base [J]. J. Phys., 2008, 98: 072017
[36] StepanovaN N, RodionovD P, TurkhanY E, , et al. Phase stability of nickel-base superalloys solidified after a high-temperature treatment of the melt [J]. Phys. Met. Metall., 2003, 95: 602
[37] WangH F, SuH J, ZhangJ, , et al. Effect of melt thermal history on solidification behavior and microstructural characteristics of a third-generation Ni-based single crystal superalloy [J]. J. Alloys Compd., 2016, 688: 430
[38] JieZ Q, ZhangJ, HuangT W, , et al. The influence of melt superheating treatment on the cast structure and stress rupture property of IN718C superalloy [J]. J. Alloys Compd., 2017, 706: 76
[39] ZhangJ, LiB, ZhouM M, , et al. Microstructure and stress rupture property of Ni-based monocrystal superalloy with melt superheating treatment [J]. J. Alloys Compd., 2009, 484: 753
[40] YinF S, SunX F, LiJ G, , et al. Effects of melt treatment on the cast structure of M963 superalloy [J]. Scr. Mater., 2003, 48: 425
[41] YinF S, SunX F, LiY B, , et al. Effect of melt superheating treatment on the microstructure and high temperature stress rupture properties of M963 superalloy [J]. Acta Metall. Sin., 2003, 39: 75
[41] 殷凤仕, 孙晓峰, 李耀彪等. 熔体过热处理对M963合金组织和高温持久性能的影响 [J]. 金属学报, 2003, 39: 75
[42] PeiZ Y, LiJ T, ZhaoM H, , et al. Influence of melt super-heating treatment on grain and carbides of K465 alloy [J]. J. Iron Steel Res., 2008, 20(2): 49
[42] 裴忠冶, 李俊涛, 赵明汉等. 熔体过热处理对K465合金晶粒和碳化物的影响 [J]. 钢铁研究学报, 2008, 20(2): 49)
[43] LiuL, ZhenB L, BanerjiA, , et al. Effect of melt homogenization temperature on the cast structures of IN 738 LC superalloy [J]. Scr. Metall. Mater., 1994, 30: 593
[44] WangC S, ZhangJ, LiuL, , et al. Effect of melt superheating treatment on directional solidification interface morphology of multi-component alloy [J]. J. Mater. Sci. Technol., 2011, 27: 668
[45] LiuL. The progress of investment casting of nickel-based superalloys [J]. Foundry, 2012, 61: 1273
[45] 刘 林. 高温合金精密铸造技术研究进展 [J]. 铸造, 2012, 61: 1273
[46] ShiC X, ZhongZ Y. Fifty Years of Superalloy in China [M]. Beijing: Metallurgical Industry Press, 2006: 72
[46] 师昌绪, 仲增墉. 中国高温合金五十年 [M]. 北京: 冶金工业出版社, 2006: 72)
[47] BrinegarJ R, NorrisL F, RozenbergL. Microcast-X fine grain casting—A progress report [A].Superalloy 1984 [C]. Warrendale, PA: TMS, 1984: 23
[48] WouldsM, BensonH. Development of a conventional fine grain casting process [A].Superalloy 1984 [C]. Warrendale, PA: TMS, 1984: 3
[49] WeiC N, BorH Y, MaC Y, , et al. A study of IN-713LC superalloy grain refinement effects on microstructure and tensile properties [J]. Mater. Chem. Phys., 2003, 80: 89
[50] MaY, SunJ H, XieX S, , et al. An investigation on fine-grain formation and structural character in cast IN718 superalloy [J]. J. Mater. Proc. Tehnol., 2003, 137: 35
[51] FerroP D, ShendyeS B. Thermal analysis from thermally-controlled solidification (TCS) trials on large investment castings [A].Superalloys 1996 [C]. Warrendale, PA: TMS, 1996: 531
[52] ZhengL, ZhangG Q, XiaoC B, , et al. The interdendritic-melt solidification control (IMSC) and its effects on the porosity and phase change of a Ni-based superalloy [J]. Scr. Mater., 2014, 74: 84
[53] BrinegarJ R, ChamberlainK R, VresicsJ J, , et al. A method of forming a fine-grained equiaxed casting [P]. US Pat, 4832112, 1989
[54] LiX, GagnoudA, FautrelleY, , et al. Dendrite fragmentation and columnar-to-equiaxed transition during directional solidification at lower growth speed under a strong magnetic field [J]. Acta Mater., 2012, 60: 3321
[55] FengX H, YangY S. Numerical modeling of crystal growth of a nickel-based superalloy with applied direct current [J]. J. Cryst. Growth, 2011, 334: 170
[56] FlemingsM C. Behavior of metal alloys in the semisolid state [J]. Metall. Trans., 1991, 22A: 957.
[57] MaX P, LiY J, YangY S. Grain refinement effect of a pulsed magnetic field on as-cast superalloy K417 [J]. J. Mater. Res., 2009, 24: 2670
[58] JiaP, WangE G, LuH, , et al. Effect of electromagnetic field on microstructure and mechanical property for Inconel 625 superalloy [J]. Acta Metall. Sin., 2013, 49: 1573
[58] 贾 鹏, 王恩刚, 鲁 辉等. 电磁场对Inconel 625合金凝固组织及力学性能的影响 [J]. 金属学报, 2013, 49: 1573
[59] ZhaoJ C, YanP, PengY F, , et al. An advanced precision cast technology for equiaxed fine grain superalloys casting [J]. Aerosp. Manuf. Technol., 2013, (6): 1
[59] 赵京晨, 燕 平, 彭艳锋等. 高温合金细晶铸造新技术 [J]. 航天制造技术, 2013, (6): 1)
[60] JinW Z, BaiF D, LiT J, , et al. Grain refinement of superalloy IN100 under the action of rotary magnetic fields and inoculants [J]. Mater. Lett., 2008, 62: 1585
[61] LiuL, HuangT W, XiongY H, , et al. Grain refinement of superalloy K4169 by addition of refiners: Cast structure and refinement mechanisms [J]. Mater. Sci. Eng., 2005, A394: 1
[62] ZhaoH T, ShiC X. Investigation of CoO inoculant for surface grain refinement of cast nickel-base superalloy blades [J]. Acta Metall. Sin., 1981, 17: 118
[62] 赵惠田, 师昌绪. CoO孕育剂促进铸造镍基高温合金晶粒细化的研究 [J]. 金属学报, 1981, 17: 118
[63] XiongY H, WeiX Y, DuJ, , et al. Grain refinement of superalloy IN718C by the addition of inoculants [J]. Metall. Mater. Trans., 2004, 35A: 2111
[64] LiX H, CaoL M, ZhangY, , et al. Effect of refiner TiN on microstructure of K4169 superalloy [J]. Foundry, 2010, 59: 1290
[64] 李相辉, 曹腊梅, 张 勇等. TiN细化剂对K4169高温合金组织的影响 [J]. 铸造, 2010, 59: 1290
[65] BenerjiA, ReifW. Present situation of grain-refinement and its effect on product quality [J]. Metall, 1987, 41: 393
[66] JiangW G, YangM C, LouL H, , et al. Preparation of Ni-W-10Y2O3 refiner and refinement mechanism in a superalloy [J]. Acta Metall. Sin. (Engl. Lett.), 2011, 24: 365
[67] JieZ Q, ZhangJ, HuangT W, , et al. Effects of grain refinement on cast structure and tensile properties of superalloy K4169 at high pouring temperature [J]. China Foundry, 2016, 13: 101
[68] JieZ Q, ZhangJ, HuangT W, , et al. Enhanced grain refinement and porosity control of the polycrystalline superalloy by a modified thermally-controlled solidification [J]. Adv. Eng. Mater., 2016, 18: 1785
[69] YangW C, QuP F, LiuL, , et al. Nucleation crystallography of Ni grains on CrFeNb inoculants investigated by Edge‐to‐Edge matching model in an IN718 superalloy [J]. Adv. Eng. Mater., 2018, 20: 1700568
[70] GongL, ChenB, DuZ H, , et al. Investigation of solidification and segregation characteristics of cast Ni-base superalloy K417G [J]. J. Mater. Sci. Technol., 2018, 34: 541
[71] WuY S, ZhangM C, XieX S. The design and research of a new low cobalt-molybdenum niobium-containing Ni-base superalloy for 700 ℃ advanced ultra-supercritical power plants [J]. Proced. Eng., 2015, 130: 617
[72] RazumovskiyV I, LozovoiA Y, RazumovskiiI M. First-principles-aided design of a new Ni-base superalloy: Influence of transition metal alloying elements on grain boundary and bulk cohesion [J]. Acta Mater., 2015, 82: 369
[73] ChandranM, SondhiS. First-principle calculation of APB energy in Ni-based binary and ternary alloys [J]. Modell. Simul. Mater. Sci. Eng., 2011, 19: 025008
[74] ReedR C, TaoT, WarnkenN. Alloys-by-design: Application to nickel-based single crystal superalloys [J]. Acta Mater., 2009, 57: 5893
[75] ConduitB D, JonesN G, StoneH J, , et al. Design of a nickel-base superalloy using a neural network [J]. Mater. Des., 2017, 131: 358
[76] BolcavageA, BrownP D, CedozR, , et al. Integrated computational materials engineering from a gas turbine engine perspective [J]. Integr. Mater. Manuf. Innovat., 2014, 3: 13
[77] SeoS M, KimI S, JoC Y, , et al. Grain structure prediction of Ni-base superalloy castings using the cellular automaton-finite element method [J]. Mater. Sci. Eng., 2007, A449-451: 713
[78] WangN, LiuL, GaoS F, , et al. Simulation of grain selection during single crystal casting of a Ni-base superalloy [J]. J. Alloys Compd., 2014, 586: 220
[79] ReyesL A, PáramoP, ZamarripaA S, , et al. Grain size modeling of a Ni-base superalloy using cellular automata algorithm [J]. Mater. Des., 2015, 83: 301
[80] DongH B, YangX L, LeeP D, , et al. Simulation of equiaxed growth ahead of an advancing columnar front in directionally solidified Ni-based superalloys [J]. J. Mater. Sci., 2004, 39: 7207
[81] AlabortF, BarbaD, SulzerS, , et al. Grain boundary properties of a nickel-based superalloy: Characterisation and modelling [J]. Acta Mater., 2018, 151: 377
[82] WangW, LeeP D, McLeanM. A model of solidification microstructures in nickel-based superalloys: Predicting primary dendrite spacing selection [J]. Acta Mater., 2003, 51: 2971
[83] NieP, OjoO A, LiZ G. Numerical modeling of microstructure evolution during laser additive manufacturing of a nickel-based superalloy [J]. Acta Mater., 2014, 77: 85
[84] ZhouN, LvD C, ZhangH L, , et al. Computer simulation of phase transformation and plastic deformation in IN718 superalloy: Microstructural evolution during precipitation [J]. Acta Mater., 2014, 65: 270
[85] KundinJ, MushongeraL, GoehlerT, , et al. Phase-field modeling of the γ′-coarsening behavior in Ni-based superalloys [J]. Acta Mater., 2012, 60: 3758
[86] RettigR, SingerR F. Numerical modelling of precipitation of topologically close-packed phases in nickel-base superalloys [J]. Acta Mater., 2011, 59: 317
[87] ZhuT, WangC Y. Misfit dislocation networks in the γ/γ' phase interface of a Ni-based single-crystal superalloy: Molecular dynamics simulations [J]. Phys. Rev., 2005, 72B: 014111
[88] WarnkenN, MaD, DrevermannA, , et al. Phase-field modelling of as-cast microstructure evolution in nickel-based superalloys [J]. Acta Mater., 2009, 57: 5862
[89] YangM, ZhangJ, WeiH, , et al. Influence of cooling rate on the formation of bimodal microstructures in nickel-base superalloys during continuous two-step aging [J]. Comput. Mater. Sci., 2018, 149: 14
[90] TsukadaY, MurataY, KoyamaT, , et al. Creep deformation and rafting in nickel-based superalloys simulated by the phase-field method using classical flow and creep theories [J]. Acta Mater., 2011, 59: 6378
[91] YangM, ZhangJ, WeiH, , et al. A phase-field model for creep behavior in nickel-base single-crystal superalloy: Coupled with creep damage [J]. Scr. Mater., 2018, 147: 16
[92] LiuB C, JingT. Simulation and Quality Control of Foundry Engineering [M]. Beijing: China Machine Press, 2001: 15
[92] 柳百成, 荆 涛. 铸造工程的模拟仿真与质量控制 [M]. 北京: 机械工业出版社, 2001: 15)
[93] QiX, ZhangY, GuH P, , et al. Numerical simulation and process optimization of thermally controlled solidification of K4169 superalloy engine case [J]. Foundry, 2015, 64: 851
[93] 戚 翔, 张 勇, 谷怀鹏等. K4169高温合金机匣热控凝固工艺的数值模拟及优化 [J]. 铸造, 2015, 64: 851
[94] DuQ, LiD Z, HuZ Y. Simulation coupling heat transfer to fluid flow during mold filling [J]. Foundry, 2000, 49: 336
[94] 杜 强, 李殿中, 胡志勇. 铸件充型过程中的流动与传热耦合模拟 [J]. 铸造, 2000, 49: 336
[95] ShendyeS, KingB, McquayP. Mechanical properties of counter-gravity cast IN718[A]. Superalloys 718, 625, 706 and Derivatives 2005 [C]. Narrendale, PA: TMS, 2005, 124: 133
[96] MishraS, RanjanaR. Reverse solidification path methodology for dewaxing ceramic shells in investment casting process [J]. Mater. Manuf. Proc., 2010, 25: 1385
[97] SunB D, WangJ, ShuD, , et al. Precision Forming Technology of Large Superalloy Castings for Aircraft [M]. Shanghai: Shanghai Jiao Tong University Press, 2016: 10
[97] 孙宝德, 王 俊, 疏 达等. 航空发动机高温合金大型铸件精密成型技术 [M]. 上海: 上海交通大学出版社, 2016: 10)
[98] HebsurM G. Processing of IN-718 lattice block castings [A]. Processing and Properties of Lightweight Cellular Metals and Structures [C]. Warrendale, PA: The Minerals, Metals & Materials Society, 2002: 85
[99] ChengY C. Counter-gravity casting simulation of superalloy casting with large thin-walled structure characteristc [D]. Xi'an: Northwestern Polytechnical University, 2014
[99] 程运超. 大面积薄壁结构特征高温合金铸件反重力铸造过程模拟 [D]. 西安: 西北工业大学, 2014
[100] HerzogD, SeydaV, WyciskE, , et al. Additive manufacturing of metals [J]. Acta Mater., 2016, 117: 371
[101] MurrL E, MartinezE, AmatoK N, , et al. Fabrication of metal and alloy components by additive manufacturing: Examples of 3D materials science [J]. J. Mater. Res. Technol., 2012, 1: 42
[102] K?rnerC. Additive manufacturing of metallic components by selective electron beam melting—A review [J]. Int. Mater. Rev., 2016, 61: 361
[103] GuoN N, LeuM C. Additive manufacturing: Technology, applications and research needs [J]. Front. Mech. Eng., 2013, 8: 215
[104] HoebelM, FehrmannB, SchnellA. Robot guided laser repair of single crystal turbine blades [A]. Power-Gen Europe [C]. Tulsa, Oklahoma: PennWell Publishing Corporation, 2003: 6
[105] GrunewaldS J. GE is using 3D printing and their new smart factory to revolutionize large-scale manufacturing.
[106] SuiS, ChenJ, MaL, , et al. Microstructures and stress rupture properties of pulse laser repaired Inconel 718 superalloy after different heat treatments [J]. J. Alloys Compd., 2019, 770: 125
[107] ZhangY C, YangL, DaiJ, , et al. Grain growth of Ni-based superalloy IN718 coating fabricated by pulsed laser deposition [J]. Opt. Laser Technol., 2016, 80: 220
[108] ZhouY, WangY, FangY, , et al. Wear resistance of Ti5Si3/NiTi biphase intermetallic compound alloy by laser melting deposition [J]. Rare Met. Mater. Eng., 2010, 39: 1411
[109] AmatoK N, GaytanS M, MurrL E, , et al. Microstructures and mechanical behavior of Inconel 718 fabricated by selective laser melting [J]. Acta Mater., 2012, 60: 2229
[110] KunzeK, EtterT, Gr?sslinJ, , et al. Texture, anisotropy in microstructure and mechanical properties of IN738LC alloy processed by selective laser melting (SLM) [J]. Mater. Sci. Eng., 2015, A620: 213
[111] WangF, WuX H, ClarkD. On direct laser deposited hastelloy X: Dimension, surface finish, microstructure and mechanical properties [J]. Mater. Sci. Technol., 2011, 27: 344
[1] 李小兵, 潜坤, 舒磊, 张孟殊, 张金虎, 陈波, 刘奎. W含量对Ti-42Al-5Mn-xW合金相转变行为的影响[J]. 金属学报, 2023, 59(10): 1401-1410.
[2] 郭东伟, 郭坤辉, 张福利, 张飞, 曹江海, 侯自兵. 基于二次枝晶间距变化特征的连铸方坯CET位置判断新方法[J]. 金属学报, 2022, 58(6): 827-836.
[3] 吴国华, 童鑫, 蒋锐, 丁文江. 铸造Mg-RE合金晶粒细化行为研究现状与展望[J]. 金属学报, 2022, 58(4): 385-399.
[4] 丁宁, 王云峰, 刘轲, 朱训明, 李淑波, 杜文博. 高应变速率多向锻造Mg-8Gd-1Er-0.5Zr合金的微观组织、织构及力学性能[J]. 金属学报, 2021, 57(8): 1000-1008.
[5] 管鹏飞, 孙胜君. 金属玻璃结构及其失稳的原子层次研究[J]. 金属学报, 2021, 57(4): 501-514.
[6] 李秀程,孙明煜,赵靖霄,王学林,尚成嘉. 铁素体-贝氏体/马氏体双相钢中界面的定量化晶体学表征[J]. 金属学报, 2020, 56(4): 653-660.
[7] 武华健, 程仁山, 李景仁, 谢东升, 宋锴, 潘虎成, 秦高梧. Al含量对Mg-Sn-Ca合金微观组织与力学性能的影响[J]. 金属学报, 2020, 56(10): 1423-1432.
[8] 邓丽萍,崔凯旋,汪炳叔,向红亮,李强. AZ31镁合金室温多道次压缩过程微观组织和织构演变的研究[J]. 金属学报, 2019, 55(8): 976-986.
[9] 李淑波, 杜文博, 王旭东, 刘轲, 王朝辉. Zr对Mg-Gd-Er合金晶粒细化机理的影响[J]. 金属学报, 2018, 54(6): 911-917.
[10] 龚永勇, 程书敏, 钟玉义, 张云虎, 翟启杰. 脉冲磁致振荡凝固技术[J]. 金属学报, 2018, 54(5): 757-765.
[11] 侯渊, 任忠鸣, 王江, 张振强, 李霞. 纵向静磁场对定向凝固GCr15轴承钢柱状晶向等轴晶转变的影响[J]. 金属学报, 2018, 54(5): 801-808.
[12] 周洪波, 李宇浩, 吕广宏. W中H行为的计算模拟研究[J]. 金属学报, 2018, 54(2): 301-313.
[13] 毛轶哲, 李建国, 封蕾. 573 K高温时效处理的Al-10Mg合金中粗大β(Al3Mg2)相对热压缩组织演化的影响及机理[J]. 金属学报, 2018, 54(10): 1451-1460.
[14] 张丽丽, 江鸿翔, 赵九洲, 李璐, 孙倩. 溶质Ti对Al-Ti-B中间合金细化Al影响的新认识:TiB2粒子的动力学行为及溶质Ti的影响[J]. 金属学报, 2017, 53(9): 1091-1100.
[15] 张志强,董利民,关少轩,杨锐. TC16钛合金辊模拉丝过程中的显微组织和力学性能[J]. 金属学报, 2017, 53(4): 415-422.