Please wait a minute...
金属学报  2019, Vol. 55 Issue (11): 1448-1456    DOI: 10.11900/0412.1961.2019.00083
  研究论文 本期目录 | 过刊浏览 |
双层孔隙铁基粉末冶金材料可控制备及自润滑机理分析
张国涛1(),尹延国2,童宝宏1,张兴权1
1. 安徽工业大学机械工程学院 马鞍山 243002
2. 合肥工业大学摩擦学研究所 合肥 230009
Controllable Preparation and Self-Lubricating Mechanism Analysis of Bilayer Porous Iron-Based Powder Metallurgy Materials
ZHANG Guotao1(),YIN Yanguo2,TONG Baohong1,ZHANG Xingquan1
1. School of Mechanical Engineering,Anhui University of Technology, Ma'anshan 243002, China
2. Institute of Tribology, Hefei University of Technology, Hefei 230009, China
引用本文:

张国涛, 尹延国, 童宝宏, 张兴权. 双层孔隙铁基粉末冶金材料可控制备及自润滑机理分析[J]. 金属学报, 2019, 55(11): 1448-1456.
ZHANG Guotao, YIN Yanguo, TONG Baohong, ZHANG Xingquan. Controllable Preparation and Self-Lubricating Mechanism Analysis of Bilayer Porous Iron-Based Powder Metallurgy Materials[J]. Acta Metall Sin, 2019, 55(11): 1448-1456.

全文: PDF(12531 KB)   HTML
摘要: 

通过在表层添加造孔剂TiH2、在基层添加致密剂酰胺蜡,采用粉末冶金工艺制备基体致密、表层多孔含油的双层铁基轴承材料,利用SEM、XRD等分析材料微观组织与物相分布,用端面摩擦试验机测试其边界润滑工况下的摩擦学性能,结合逐级加载工况下的单、双层铁基材料的摩擦实验结果,分析单、双层烧结材料在不同载荷工况下的供油自润滑机理。结果表明,改变表层中TiH2的含量可以实现双层材料表层孔隙率和含油率的变化,同时由原位合成反应生成的硬度较高的TiC颗粒可提高材料的表面硬度,满足高承载时的耐磨性能要求,维持摩擦副接触界面和润滑状态稳定。含3.5%TiH2的双层材料综合力学和摩擦学性能较好;双层材料的疏松表层具有较好的含油自润滑性能,致密基体能增大材料强度,也使润滑油保持在两对偶面之间,综合摩擦学性能和力学性能较单层材料好,适用于重载或复杂润滑工况。

关键词 双层孔隙铁基材料摩擦自润滑    
Abstract

The bilayer porous material with dense substrate layer and variable porosity surface layer was prepared by powder metallurgy technology. TiH2 was used as the pore former to improve the oil content in the surface layer, and amide wax was used as a dense agent to increase the density and strength of the substrate. The microstructure, phases distribution and the worn surface morphology were characterized by SEM, EDS, XRD, etc. The tribological properties under boundary lubrication conditions were tested by end-face friction tester. The self-lubricating mechanism of single and bilayer sintered materials under different load conditions was analyzed by comparing their friction coefficients under the progressive loading friction test. Results show that adding TiH2 in the surface layer can effectively improve the porosity and oil ratio of the bilayer materials. Meanwhile, the hard particles TiC generated by the in-situ synthesis reaction have a hard reinforcing effect on the pore channel, which will improve the wear resistance and maintain steady the contact interface and lubrication state of the friction pair. The composite material containing 3.5%TiH2 has better mechanical and tribological properties. The looser surface layer of the composite material has a better oil self-lubricating property, and the dense substrate can effectively prevent the oil moving downward and keep the lubricant between the friction surfaces. So the comprehensive tribological and mechanical properties of the composite material are better than that of the single-layer material, which is suitable for heavy load or complex lubrication conditions.

Key wordsbilayer pore    iron-based material    friction    self-lubricating
收稿日期: 2019-03-27     
ZTFLH:  TH117  
基金资助:国家自然科学基金项目Nos(51575151);国家自然科学基金项目Nos(51975005);及安徽省自然科学基金项目No(1908085QE195)
作者简介: 张国涛,男,1986年生,博士
No.CCuPTiH2ZnStFe
10.850.1~0.200.8~1.6Bal.
20.850.1~0.220.8~1.6Bal.
30.850.1~0.22.50.8~1.6Bal.
40.850.1~0.230.8~1.6Bal.
50.850.1~0.23.50.8~1.6Bal.
60.850.1~0.240.8~1.6Bal.
表1  不同TiH2含量的配方 (mass fraction / %)
图1  不同TiH2含量时材料中的孔隙分布
图2  试样截面形貌及线扫描元素分布
图3  不同TiH2含量试样表层SEM和EDS分析
图4  含3.5%TiH2材料的XRD谱

TiH2 content

%

Oil ratio

%

Hardness HRB

Crushing strength

MPa

013.454852
216.458816
2.517.661789
318.363781
3.518.765762
419.266753
表2  TiH2含量对表层材料性能的影响
图5  逐级加载工况下不同TiH2含量时双层试样的摩擦学特性
图6  不同TiH2含量双层试样变载实验的磨痕形貌
图7  逐级加载实验下单层7#和复层5#试样的摩擦学性能
图8  单层、双层烧结试样的供油自润滑机理
[1] SongY P, GaoX, LiF D, et al. Study on self-sharpening cutters for forage harvesting machine with functionally gradient material prepared by combustion synthesis melt-casting under ultra-gravity field [J]. Sci. Sin. Tech., 2018, 48: 94
[1] 宋月鹏, 高 雪, 李法德等. 超重力熔铸梯度材料制备饲草料收获机械自磨锐切刀 [J]. 中国科学: 技术科学, 2018, 48: 94
[2] MartinF, GarcíaC, BlancoY. Influence of residual porosity on the dry and lubricated sliding wear of a powder metallurgy austenitic stainless steel [J]. Wear, 2015, 328-329: 1
[3] CamposK R, KapsaP, BinderC, et al. Tribological evaluation of self-lubricating sintered steels [J]. Wear, 2015, 332-333: 932
[4] ChengL, ChengJ G, ChenW C, et al. Effects of chromium addition forms on microstructure and properties of powder metallurgy sintering Fe-2Cu-3Cr-0.8Calloy [J]. Mater. Mech. Eng., 2019, 43: 47
[4] 程 璐, 程继贵, 陈闻超等. 铬元素添加形式对粉末冶金烧结Fe-2Cu-3Cr-0.8C合金组织和性能的影响 [J]. 机械工程材料, 2019, 43: 47
[5] PanY, LuX, LiuC C, et al. Effect of Sn addition on densification and mechanical properties of sintered TiAl base alloys [J]. Acta Metall. Sin., 2018, 54: 93
[5] 潘 宇, 路 新, 刘程程等. Sn对TiAl基合金烧结致密化与力学性能的影响 [J]. 金属学报, 2018, 54: 93
[6] GuoR P, XuL, ChengW X, et al. Effect of hot isostatic pressing parameters on microstructure and mechanical properties of powder metallurgy Ti-5Al-2.5Sn ELI alloy [J]. Acta Metall. Sin., 2016, 52: 842
[6] 郭瑞鹏, 徐 磊, 程文祥等. 热等静压参数对Ti-5Al-2.5Sn ELI粉末合金组织与力学性能的影响 [J]. 金属学报, 2016, 52: 842
[7] ZhengK H, GaoY M, ChenL, et al. Three-body abrasive wear behavior of iron matrix composites reinforced with tungsten carbide particles [J]. Tribology, 2012, 32: 176
[7] 郑开宏, 高义民, 陈 亮等. 颗粒增强铁基复合材料的三体磨料磨损性能 [J]. 摩擦学学报, 2012, 32: 176
[8] ZhangH H, LiuZ L, LiuX Q, et al. Effects of diffusion alloying treatment on microstructure and properties of in-situ synthesized TiCp/Fe-based PM materials [J]. Mater. Sci. Eng. Powder Metall., 2016, 21: 722
[8] 张浩瀚, 刘子利, 刘希琴等. 预扩散处理对原位生成TiCp/Fe基粉末冶金复合材料组织与性能的影响 [J]. 粉末冶金材料科学与工程, 2016, 21: 722
[9] LiuZ L, LiH H, LiuX Q, et al. Effect of warm compaction lubricant on the properties of Fe-based powder metallurgy materials [J]. Mater. Res. Express, 2019, 6: 1591
[10] SharmaM, GuptaG K, DasguptaR, et al. Titanium foams processed through powder metallurgy route using lubricant acrawax as space holder material [J]. Trans. Indian Inst. Met., 2018, 71: 1933
[11] RavindranP, ManisekarK, RathikaP, et al. Tribological properties of powder metallurgy—Processed aluminium self lubricating hybrid composites with SiC additions [J]. Mater. Des., 2013, 45: 561
[12] HidalgoA A, FrykholmR, EbelT, et al. Powder metallurgy strategies to improve properties and processing of titanium alloys: A review [J]. Adv. Eng. Mater., 2017, 19: 1600743
[13] MereibD, SeuU C C, ZakhourM, et al. Fabrication of biomimetic titanium laminated material using flakes powder metallurgy [J]. J. Mater. Sci., 2018, 53: 7857
[14] ChenB, ShenJ H, YeX X, et al. Advanced mechanical properties of powder metallurgy commercially pure titanium with a high oxygen concentration [J]. J. Mater. Res., 2017, 32: 3769
[15] XuanZ, WangM J, FuY F, et al. Effect of borides on hot deformation behavior and microstructure evolution of powder metallurgy high borated stainless steel [J]. Mater. Charact., 2017, 124: 182
[16] JinG, TakeuchiM, HondaS, et al. Properties of multilayered mullite/Mo functionally graded materials fabricated by powder metallurgy processing [J]. Mater. Chem. Phys., 2005, 89: 238
[17] Wi?niewska-WeinertH. Deposition of MoS2 particulate layers by pressure impregnation of porous sliding bearings [J]. Arch. Civil Mech. Eng., 2014, 14: 255
[18] MouriT, SugaiY, ItoY, et al. Strength and friction-wear properties of complex layer bearing via unification powder forming and sintering process [J]. J. Jpn. Soc. Powder Powder Metall., 2015, 62: 371
[18] 毛利敏彦, 須貝洋介, 伊藤容敬等. 一体成形?焼結した複層軸受の強度と摩擦摩耗特性 [J]. 粉体および粉末冶金, 2015, 62: 371
[19] Vida-SimitiI, JumateN, ThalmaierG, et al. Sintering of sedimented nickel powder gradual porous structures [J]. Powder Metall., 2012, 55: 154
[20] ChengM. Research on the microstructure and mechanical properties of double-layer iron-based powder metallurgy material [D]. Nanjing: Nanjing University of Science and Technology, 2013
[20] 程 敏. 双层铁基粉末冶金材料组织与性能研究 [D]. 南京: 南京理工大学, 2013
[21] ZhangG T, YinY G, XuM, et al. Tribological properties and mechanism of the bilayer iron based powder metallurgy materials [J]. Ind. Lubr. Tribol., 2018, 70: 1642
[22] KagoharaY, TakayanagiS, HanedaS, et al. Tribological property of plain bearing with low frictional layer [J]. Tribol. Int., 2009, 42: 1800
[23] übeyliM, BalciE, SarikanB, et al. The ballistic performance of SiC-AA7075 functionally graded composite produced by powder metallurgy [J]. Mater. Des., 2014, 56: 31
[24] ZhangH Y, JinH, WangJ J, et al. Development of a path planning algorithm for reduced dimension patch printing conductive pattern on surfaces [J]. Int. J. Adv. Manuf. Technol., 2017, 95: 1645
[25] ZhangG T, YinY G, LiuZ M, et al. Tribological properties of multi-layer iron based powder metallurgy materials [J]. Trans. Mater. Heat Treat., 2017, 38: 7
[25] 张国涛, 尹延国, 刘振明等. 复层铁基粉末冶金材料的摩擦学性能 [J]. 材料热处理学报, 2017, 38: 7
[1] 冯力, 王贵平, 马凯, 杨伟杰, 安国升, 李文生. 冷喷涂辅助感应重熔合成AlCo x CrFeNiCu高熵合金涂层的显微组织和性能[J]. 金属学报, 2023, 59(5): 703-712.
[2] 苗军伟, 王明亮, 张爱军, 卢一平, 王同敏, 李廷举. AlCr1.3TiNi2 共晶高熵合金的高温摩擦学性能及磨损机理[J]. 金属学报, 2023, 59(2): 267-276.
[3] 李会朝, 王彩妹, 张华, 张建军, 何鹏, 邵明皓, 朱晓腾, 傅一钦. 搅拌摩擦增材制造技术研究进展[J]. 金属学报, 2023, 59(1): 106-124.
[4] 王文权, 杜明, 张新戈, 耿铭章. H13钢表面电火花沉积WC-Ni基金属陶瓷涂层微观组织及摩擦磨损性能[J]. 金属学报, 2021, 57(8): 1048-1056.
[5] 陈果, 王新波, 张仁晓, 马成悦, 杨海峰, 周利, 赵运强. 搅拌头转速对2507双相不锈钢搅拌摩擦加工组织及性能的影响[J]. 金属学报, 2021, 57(6): 725-735.
[6] 毕甲紫, 刘晓斌, 李然, 张涛. 非晶合金粉末作为润滑油添加剂的摩擦学性能[J]. 金属学报, 2021, 57(4): 559-566.
[7] 李彦默, 郭小辉, 陈斌, 李培跃, 郭倩颖, 丁然, 余黎明, 苏宇, 李文亚. GH4169合金与S31042钢线性摩擦焊接头组织及力学性能[J]. 金属学报, 2021, 57(3): 363-374.
[8] 何长树, 郄默繁, 张志强, 赵骧. 轴向超声振动对搅拌摩擦焊过程中金属流动行为的影响[J]. 金属学报, 2021, 57(12): 1614-1626.
[9] 刘晨曦, 毛春亮, 崔雷, 周晓胜, 余黎明, 刘永长. 低活化铁素体/马氏体钢组织调控及其固相连接研究进展[J]. 金属学报, 2021, 57(11): 1521-1538.
[10] 赵万新, 周正, 黄杰, 杨延格, 杜开平, 贺定勇. FeCrNiMo激光熔覆层组织与摩擦磨损行为[J]. 金属学报, 2021, 57(10): 1291-1298.
[11] 刘明, 严富文, 高诚辉. 渐进法向力对金属材料微米划痕响应的影响[J]. 金属学报, 2021, 57(10): 1333-1342.
[12] 宋芊汀, 徐映坤, 徐坚. (TiZrNbTa)90Mo10高熵合金与Al2O3干摩擦条件下的滑动磨损行为[J]. 金属学报, 2020, 56(11): 1507-1520.
[13] 杜随更,高漫,徐婉婷,王喜锋. TC11/TC17钛合金线性摩擦焊接头界面研究[J]. 金属学报, 2019, 55(7): 885-892.
[14] 赵明雨,甄会娟,董志宏,杨秀英,彭晓. 新型耐磨耐高温氧化NiCrAlSiC复合涂层的制备及性能研究[J]. 金属学报, 2019, 55(7): 902-910.
[15] 王文琴, 王昭漫, 李玉龙, 王德, 李淼, 陈情. 电阻缝焊法制备铁基WC/金属双层涂层及其摩擦行为[J]. 金属学报, 2019, 55(4): 537-546.