Please wait a minute...
金属学报  2019, Vol. 55 Issue (10): 1282-1290    DOI: 10.11900/0412.1961.2019.00056
  本期目录 | 过刊浏览 |
喷丸表面粗糙度对纯Ti焊接接头在HCl溶液中应力腐蚀开裂行为的影响
张聪惠1,2(),荣花1,宋国栋1,胡坤1
1. 西安建筑科技大学冶金工程学院 西安 710055
2. 陕西省冶金工程技术研究中心 西安 710055
Effect of Surface Roughness by Shot Peening on Stress Corrosion Cracking Behavior of Pure Titanium Welded Joints in HCl Solution
ZHANG Conghui1,2(),RONG Hua1,SONG Guodong1,HU Kun1
1. School of Metallurgical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
2. Metallurgical Engineering Technology Research Center of Shaanxi Province, Xi'an 710055, China
引用本文:

张聪惠, 荣花, 宋国栋, 胡坤. 喷丸表面粗糙度对纯Ti焊接接头在HCl溶液中应力腐蚀开裂行为的影响[J]. 金属学报, 2019, 55(10): 1282-1290.
Conghui ZHANG, Hua RONG, Guodong SONG, Kun HU. Effect of Surface Roughness by Shot Peening on Stress Corrosion Cracking Behavior of Pure Titanium Welded Joints in HCl Solution[J]. Acta Metall Sin, 2019, 55(10): 1282-1290.

全文: PDF(15731 KB)   HTML
摘要: 

采用慢应变速率拉伸(SSRT)实验研究了TA2纯Ti焊接接头原始试样、超声喷丸(USSP)处理试样和USSP+表面打磨处理试样在10%HCl溶液中的应力腐蚀行为,通过OM、TEM、SEM分别对焊接接头各区域组织及腐蚀断口形貌进行了观测,对不同工艺处理试样的表面粗糙度、残余应力进行了测定,并对其腐蚀机理进行了分析。结果表明,纯Ti焊接接头在该体系中应力腐蚀与氢脆同时存在,焊缝区为焊接接头的薄弱环节,最先发生失效。原始试样在该体系中应力腐蚀开裂敏感性指数(ISCC)为25.61%,具有应力腐蚀倾向;USSP处理试样的ISCC为18.24%,USSP+1500#表面打磨处理试样的ISCC为11.96%,均无明显应力腐蚀倾向。USSP处理试样表面粗糙度较大,易引起应力集中形成裂纹源,与腐蚀坑作用相似;USSP+表面打磨处理减小了试样表面粗糙度,应力分配更加均匀,试样延伸率增加,塑性提升,进一步改善了材料的抗应力腐蚀开裂性能。

关键词 超声喷丸纯Ti应力腐蚀慢应变速率拉伸粗糙度    
Abstract

Pure titanium is often used in the manufacture of pressure vessels due to its excellent corrosion resistance. Pressure vessels are generally operated in various corrosive media and subjected to varying degrees of corrosion. Stress corrosion cracking is one of the most dangerous forms of damage to pressure vessels used in various fields. Welded joints become the weak link of the pressure vessels because of the uneven microstructure and welding residual stress, which could cause stress corrosion and directly affect the overall performance and service life of pressure vessels. At present, as a method to improve the mechanical and corrosion properties of materials, shot peening has been widely studied. However, shot peening often leads to the increase of surface roughness and even causes defects such as cracks and surface damage, which will affect the effect of improving the corrosion resistance of materials. It remains to be further studied that the specific influence of surface roughness on the stress corrosion resistance of metal materials. In this work, the stress corrosion behavior of the original samples, ultrasonic shot peening (USSP) samples and USSP with surface polished samples of TA2 titanium welded joints in 10%HCl solution were studied by slow strain rate tension (SSRT) experiment. OM, TEM and SEM were used to observe the microstructure and corrosion fracture morphology of the welded joints. The surface roughness and residual stress of different processed samples were measured, and the corrosion mechanisms were analyzed. The results showed that both stress corrosion and hydrogen embrittlement occurred in pure titanium welded joints in this system, and weld metal (WM) was the weakest link in the welded joint. The stress corrosion cracking susceptibility index (ISCC) of the original sample in this system was 25.61%, indicating a tendency of stress corrosion. The ISCC of the USSP sample was reduced by 28.78%, and that of the USSP with surface polished (1500#) sample was reduced by 53.3%; both of them had no obvious tendency of stress corrosion in the system. The roughness of the USSP surface could cause stress concentration to form a crack source, which was similar to the pitting propagation. USSP with surface polished treatment reduced the surface roughness, achieving the homogenization of the stress distribution and increasing the elongation and the plasticity of the samples, which could further improve the stress corrosion cracking resistance.

Key wordsUSSP    pure titanium    stress corrosion    SSRT    roughness
收稿日期: 2019-03-01     
ZTFLH:  TG178  
基金资助:国家自然科学基金项目(51274160)
作者简介: 张聪惠,女,1974年生,教授,博士
图1  慢应变速率拉伸(SSRT)试样尺寸示意图
图2  超声喷丸(USSP)处理纯Ti焊接接头横截面金相组织
图3  不同工艺处理纯Ti焊接接头各区域表层TEM像及对应的选区电子衍射(SAED)花样
图4  不同工艺处理纯Ti焊接接头表面三维形貌
图5  不同工艺处理纯Ti焊接接头表层残余应力分布
Statistical dataxˉ / MPaS2 / (MPa)2
Original25.883237.13
USSP-431.762101.25
USSP+600#-412.74938.16
USSP+1500#-327.641194.13
表1  不同工艺处理纯Ti焊接接头表层残余应力
图6  不同工艺处理试样在空气和10%HCl溶液中的SSRT曲线
图7  10%HCl溶液中不同表面打磨工艺处理试样的SSRT曲线
TreatmentEnvironmentσb / MPaδ / %ψ / %W / (J·m-3)ISCC / %
OriginalAir457.9030.7646.62119.46-
OriginalHCl394.9628.6639.7888.8725.61
USSPHCl412.4928.7440.9397.6718.24
USSP+600#HCl412.4829.4942.79100.7715.64
USSP+1500#HCl402.5331.3043.74105.1711.96
表2  不同工艺处理纯Ti焊接接头SSRT实验结果及应力腐蚀开裂敏感性指数(ISCC)
图8  不同工艺处理试样SSRT断口形貌
图9  USSP处理前后工业纯Ti焊接接头在10%HCl溶液中SSRT断口横截面形貌
[1] Chen S, Sun T, Jiang X, et al. Online monitoring and evaluation of the weld quality of resistance spot welded titanium alloy [J]. J. Manuf. Processes, 2016, 23: 183
[2] Qi Y L, Deng J, Hong Q ,et al. Electron beam welding, laser beam welding and gas tungsten arc welding of titanium sheet [J]. Mater. Sci. Eng., 2000, A280: 177
[3] Shih D S, Robertson I M, Birnbaum H K. Hydrogen embrittlement of α titanium: In situTEM studies [J]. Acta Metall., 1988, 36: 111
[4] Nishimura R, Shirono J, Jonokuchi A. Hydrogen-induced cracking of pure titanium in sulphuric acid and hydrochloric acid solutions using constant load method [J]. Corros. Sci., 2008, 50: 2691
[5] Raja V S, Shoji T. Stress Corrosion Cracking [M]. Cambridge: Woodhead Publishing, 2011: 381
[6] Lalik S, Cebulski J, Michalik R. Corrosion resistance of welding joint from titanium in water solution of hydrochloric acid [J]. J.Achieve. Mater. Manuf. Eng., 2007, 20: 147
[7] Hollis A C, Scully J C. The stress corrosion cracking and hydrogen embrittlement of titanium in methanol-hydrochloric acid solutions [J]. Corros. Sci., 1993, 34: 821
[8] Alkhaldi H S, Zaid A I O, Alkhaldi S M. Shot peening as a process for improving fatigue life, strength and enhancing the resistance to stress corrosion cracking [J]. Int. J. Sci. Eng. Res., 2017, 8: 584
[9] Xian N, Liu D X, Ren C Q ,et al. Improvement of SCC behavior of pipeline steel X80 weld joint by shot peening [J]. Corros. Sci. Prot. Technol., 2008, 20: 466
[9] (鲜 宁, 刘道新, 任呈强等. 喷丸强化改善管线钢X80焊接接头SCC行为研究 [J]. 腐蚀科学与防护技术, 2008, 20: 466)
[10] Ling X, Ma G. Effect of ultrasonic impact treatment on the stress corrosion cracking of 304 stainless steel welded joints [J]. J. Pressure Vessel Technol., 2009, 131: 051502
[11] Yu J, Gou G, Zhang L, et al. Ultrasonic impact treatment to improve stress corrosion cracking resistance of welded joints of aluminum alloy [J]. J. Mater. Eng. Perform., 2016, 25: 3046
[12] Hatamleh O, Singh P M, Garmestani H. Corrosion susceptibility of peened friction stir welded 7075 aluminum alloy joints [J]. Corros. Sci., 2009, 51: 135
[13] Lu Z M, Shi L M, Zhu S J ,et al. Effect of high energy shot peening pressure on the stress corrosion cracking of the weld joint of 304 austenitic stainless steel [J]. Mater. Sci. Eng., 2015, A637: 170
[14] Kong D J, Ye C D, Wang W C ,et al. Effects of surface qualities on corrosion performances of X80 pipeline steel welded joints by laser shock processing [J]. Trans. China Weld. Inst., 2014, 35(5): 63
[14] (孔德军, 叶存冬, 王文昌等. 激光冲击处理后X80焊接接头表面质量对腐蚀性能的影响 [J]. 焊接学报, 2014, 35(5): 63)
[15] Peyre P, Scherpereel X, Berthe L ,et al. Surface modifications induced in 316L steel by laser peening and shot-peening. Influence on pitting corrosion resistance [J]. Mater. Sci. Eng., 2000, A280: 294
[16] Lee H S, Kim D S, Jung J S ,et al. Influence of peening on the corrosion properties of AISI 304 stainless steel [J]. Corros. Sci., 2009, 51: 2826
[17] Azar V, Hashemi B, Yazdi M. The effect of shot peening on fatigue and corrosion behavior of 316L stainless steel in Ringer's solution [J]. Surf. Coat. Technol., 2010, 204: 3546
[18] Wang T B, Li B L, Li Y C ,et al. High-speed deformation response of dislocation boundaries in commercially pure titanium [J]. Rare Met. Mater. Eng., 2017, 46: 1380
[18] (王同波, 李伯龙, 李颖超等. 工业纯钛位错界面的高速形变响应 [J]. 稀有金属材料与工程, 2017, 46: 1380)
[19] Zhang C H, Song W, Li F B, et al. Microstructure and corrosion properties of Ti-6Al-4V alloy by ultrasonic shot peening [J]. Int. J. Electrochem. Sci., 2015, 10: 9167
[20] Nie X F, He W F, Wang X D, et al. Effects of laser shock peening on microstructure and mechanical properties of TC17 titanium alloy [J]. Rare Met. Mater. Eng., 2014, 43: 1691
[20] (聂祥樊, 何卫锋, 王学德等. 激光冲击强化对TC17钛合金微观组织和力学性能的影响 [J]. 稀有金属材料与工程, 2014, 43: 1691)
[21] Zhang C H, Wang J, Song W ,et al. An analyses of high energy shot-peening (HESP) industrial pure titanium welded joints' corrosion behavior in 10%HCl solution [J]. Mater. Rev., 2018, 32: 1564
[21] (张聪惠, 王 婧, 宋 薇等. 高能喷丸处理工业纯钛焊接接头在10%HCl溶液中的腐蚀行为 [J]. 材料导报, 2018, 32: 1564)
[22] Pereira H B, Panossian Z, Baptista I P ,et al. Investigation of stress corrosion cracking of austenitic, duplex and super duplex stainless steels under drop evaporation test using synthetic seawater [J]. Mater. Res., 2019, 22: e20180211
[23] Burnett T L, Holroyd N J H, Scamans G M, et al. The role of crack branching in stress corrosion cracking of aluminium alloys [J]. Corros. Rev., 2015, 33: 443
[24] Cao S, Zhu S M, Samuel Lim C V ,et al. The mechanism of aqueous stress-corrosion cracking of α+β titanium alloys [J]. Corros. Sci., 2017, 125: 29
[25] Li Z J, Liu H, Gao K W, et al. Molecular dynamics simulation of adsorption-enhanced dislocation emission, motion and crack propagation [J]. Acta Metall. Sin., 2001, 37: 1013
[25] (李忠吉, 刘 辉, 高克玮等. 吸附促进位错发射、运动以及裂纹扩展的分子动力学模拟 [J]. 金属学报, 2001, 37: 1013)
[26] Yao C F, Ma L F, Du Y X ,et al. Surface integrity and fatigue behavior in shot-peening for high-speed milled 7055 aluminum alloy [J]. Proc.Inst. Mech. Eng. Part B: J. Eng. Manuf., 2017, 231: 243
[27] Kentish P. Stress corrosion cracking of gas pipelines—Effect of surface roughness, orientations and flattening [J]. Corros. Sci., 2007, 49: 2521
[1] 韩恩厚, 王俭秋. 表面状态对核电关键材料腐蚀和应力腐蚀的影响[J]. 金属学报, 2023, 59(4): 513-522.
[2] 常立涛. 压水堆主回路高温水中奥氏体不锈钢加工表面的腐蚀与应力腐蚀裂纹萌生:研究进展及展望[J]. 金属学报, 2023, 59(2): 191-204.
[3] 高栋, 周宇, 于泽, 桑宝光. 液氮温度下纯Ti动态塑性变形中的孪晶变体选择[J]. 金属学报, 2022, 58(9): 1141-1149.
[4] 马志民, 邓运来, 刘佳, 刘胜胆, 刘洪雷. 淬火速率对7136铝合金应力腐蚀开裂敏感性的影响[J]. 金属学报, 2022, 58(9): 1118-1128.
[5] 宋文硕, 宋竹满, 罗雪梅, 张广平, 张滨. 粗糙表面高强铝合金导线疲劳寿命预测[J]. 金属学报, 2022, 58(8): 1035-1043.
[6] 刘振宝,梁剑雄,苏杰,王晓辉,孙永庆,王长军,杨志勇. 高强度不锈钢的研究及发展现状[J]. 金属学报, 2020, 56(4): 549-557.
[7] 李鑫,董月成,淡振华,常辉,方志刚,郭艳华. 等通道角挤压制备超细晶纯Ti的腐蚀性能研究[J]. 金属学报, 2019, 55(8): 967-975.
[8] 马宏驰, 杜翠薇, 刘智勇, 李永, 李晓刚. E690高强低合金钢焊接热影响区典型组织在含SO2海洋环境中的应力腐蚀行为对比研究[J]. 金属学报, 2019, 55(4): 469-479.
[9] 邓平,孙晨,彭群家,韩恩厚,柯伟,焦治杰. 核用304不锈钢辐照促进应力腐蚀开裂研究[J]. 金属学报, 2019, 55(3): 349-361.
[10] 郭军力, 文光华, 符姣姣, 唐萍, 侯自兵, 谷少鹏. 冷却速率对包晶钢凝固过程中包晶转变收缩的影响[J]. 金属学报, 2019, 55(10): 1311-1318.
[11] 张亚娟, 王海滨, 宋晓艳, 聂祚仁. SLM球形Ni粉的制备与打印工艺性能[J]. 金属学报, 2018, 54(12): 1833-1842.
[12] 余军, 张德平, 潘若生, 董泽华. 井下含硫环空液中P110油管钢应力腐蚀开裂的电化学噪声特征[J]. 金属学报, 2018, 54(10): 1399-1407.
[13] 苑洪钟,刘智勇,李晓刚,杜翠薇. 外加电位对X90钢及其焊缝在近中性土壤模拟溶液中应力腐蚀行为的影响[J]. 金属学报, 2017, 53(7): 797-807.
[14] 郭舒,韩恩厚,王海涛,张志明,王俭秋. 核电站316L不锈钢弯头应力腐蚀行为的寿命预测[J]. 金属学报, 2017, 53(4): 455-464.
[15] 明洪亮,张志明,王俭秋,韩恩厚,苏明星. 国产核电安全端异种金属焊接件的微观结构及局部性能研究[J]. 金属学报, 2017, 53(1): 57-69.