Please wait a minute...
金属学报  2019, Vol. 55 Issue (8): 976-986    DOI: 10.11900/0412.1961.2019.00050
  本期目录 | 过刊浏览 |
AZ31镁合金室温多道次压缩过程微观组织和织构演变的研究
邓丽萍1,崔凯旋2,汪炳叔2(),向红亮1,李强2
1. 福州大学机械工程及自动化学院 福州 350108
2. 福州大学材料科学与工程学院 福州 350108
Microstructure and Texture Evolution of AZ31 Mg Alloy Processed by Multi-Pass Compressing Under Room Temperature
Liping DENG1,Kaixuan CUI2,Bingshu WANG2(),Hongliang XIANG1,Qiang LI2
1. School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350108, China
2. College of Materials Science and Engineering, Fuzhou University,Fuzhou 350108, China
引用本文:

邓丽萍,崔凯旋,汪炳叔,向红亮,李强. AZ31镁合金室温多道次压缩过程微观组织和织构演变的研究[J]. 金属学报, 2019, 55(8): 976-986.
Liping DENG, Kaixuan CUI, Bingshu WANG, Hongliang XIANG, Qiang LI. Microstructure and Texture Evolution of AZ31 Mg Alloy Processed by Multi-Pass Compressing Under Room Temperature[J]. Acta Metall Sin, 2019, 55(8): 976-986.

全文: PDF(15871 KB)   HTML
摘要: 

对AZ31镁合金在室温进行多道次压缩变形,利用EBSD技术研究其微观组织和织构演变,分析孪晶在细化晶粒和调控织构方面发挥的作用。结果表明:多道次压缩过程中的组织和织构演变主要受{101ˉ2}拉伸孪生影响,道次应变量越大,织构变化越明显,每道次压缩后,利于拉伸孪生的晶粒取向发生孪生转到压缩轴附近,从而弱化初始基面织构,而退孪晶的发生则不利于细化晶粒和弱化织构。在多道次压缩过程中,孪生Schmid准则支配着变形中的{101ˉ2}孪晶变体的选择,从而控制织构的演变。残留的基体、预变形产生的孪晶与后续变形中产生的孪晶片层相互交叉,分割细化晶粒;道次变形量会影响多向变形过程每道次孪晶的激活量和孪晶片层的形貌,从而影响晶粒的细化程度。

关键词 镁合金多道次变形孪生织构晶粒细化    
Abstract

Mg alloy has hexagonal structure and exhibits poor workability at room temperature, which is attributed to the difficulty in activating a sufficient number of independent slips to accommodate the deformation. Twinning plays an important role in plastic deformation of Mg alloys during low and medium temperature to accommodate the imposed strain, especially the strain along the c-axis. Therefore, the microstructure and texture evolutions of AZ31 Mg alloy during multi-pass compressions at room temperature were investigated by EBSD technology. The results show that the microstructure and texture evolutions are mainly controlled by tension twinning during multi-pass compression. And the more the strain passes, the severer the texture transformation. The c-axes of the grains are almost rotated to the compression direction by tension twins. The twins generated during multi-directional compression can separate grains and then refine them. However, the de-twinning can rotate the grains back to the initial orientations, which is against the texture weakening. The Schmid law governs the characteristics of {101ˉ2} twinning, and thus controls the texture evolution. Both the residual matrix and the pre-deformation induced twins intersect with the twins generated during subsequent deformation. And this can separate the grains and weaken the texture strength. The number and morphology of the activated twin behavior during multi-pass compression would be influenced by the pass reductions, consequently affecting the grain refinement.

Key wordsMg alloy    multi-pass deformation    twinning    texture    grain refinement
收稿日期: 2019-02-26     
ZTFLH:  TG146.22  
基金资助:国家自然科学基金项目((Nos.51301040 and 51601039));中国博士后科学基金项目(No.2016M590591)
作者简介: 邓丽萍,女,1986年生,副教授,博士
图1  变形前AZ31镁合金板材的微观组织、织构及压缩试样取样示意图
图2  样品沿TD3.0%-RD3.0%-ND3.1%路径压缩的取向成像图和界面结构图
图3  样品沿TD5.5%-RD5.0%-ND5.2%路径压缩的取向成像图和界面结构图
SampleVt / %L1 / μm-1L2/ μm-1
TD5.5%680.22820.0396
TD5.5%-RD5.0%500.17590.0851
TD5.5%-RD5.0%-ND5.2%620.13830.1221
表2  沿TD5.5%-RD5.0%-ND5.2%路径压缩各道次孪晶体积分数和单位面积孪晶界面长度
SampleVt / %NtL1 / μm-1L2/ μm-1
TD3.0%275.10.23030.0043
TD3.0%-RD3.0%216.70.35430.0454
TD3.0%-RD3.0%-ND3.1%304.10.14520.0073
表1  沿TD3.0%-RD3.0%-ND3.1%路径压缩各道次孪晶体积分数、平均单位晶粒孪晶片层数和单位面积孪晶界面长度
图4  沿TD3.0%-RD3.0%-ND3.1%和TD5.5%-RD5.0%-ND5.2%路径压缩的织构演变
图5  TD5.5%-RD5.0%-ND5.2%压缩过程中{101ˉ2}孪生的Schmid因子分析示意图
图6  TD3.0%-RD3.0%-ND3.1%样品孪晶细化晶粒行为EBSD取向成像图和{0001}极图分析
图7  TD5.5%-RD5.0%和TD5.5%-RD5.0%-ND5.2%样品孪晶细化晶粒行为EBSD取向成像图和{0001}极图分析
[1] Liu Q. Research progress on plastic deformation mechanism of Mg alloys [J]. Acta Metall. Sin., 2010, 46: 1458
[1] (刘 庆. 镁合金塑性变形机理研究进展 [J]. 金属学报, 2010, 46: 1458)
[2] Chakkedath A, Boehlert C J. In situ scanning electron microscopy observations of contraction twinning and double twinning in extruded Mg-1Mn (wt. %) [J]. JOM, 2015, 67: 1748
[3] Knezevic M, Levinson A, Harris R, et al. Deformation twinning in AZ31: Influence on strain hardening and texture evolution [J]. Acta Mater., 2010, 58: 6230
[4] Barnett M R. Twinning and the ductility of magnesium alloys: Part I: "Tension" twins [J]. Mater. Sci. Eng., 2007, A464: 1
[5] Li S Q, Tang W N, Chen R S, et al. Effect of pre-induced twinning on microstructure and tensile ductility in GW92K magnesium alloy during multi-direction forging at decreasing temperature [J]. J. Magnes. Alloys, 2014, 2: 287
[6] Xu S, Liu T M, Chen H C, et al. Reducing the tension-compression yield asymmetry in a hot-rolled Mg-3Al-1Zn alloy via multidirectional pre-compression [J]. Mater. Sci. Eng., 2013, A565: 96
[7] Kuang X L, Liu T M, He J J. Evolution of texture and yielding behavior induced by {101ˉ2} twinning of magnesium alloy [J]. Chin. J. Nonferrous Met., 2014, 24: 1111
[7] (况新亮, 刘天模, 何杰军. 基于镁合金{1012}孪生的织构调整及屈服行为演变 [J]. 中国有色金属学报, 2014, 24: 1111)
[8] Xin Y C, Jiang J, Chapuis A, et al. Plastic deformation behavior of AZ31 magnesium alloy under multiple passes cross compression [J]. Mater. Sci. Eng., 2012, A532: 50
[9] Song G S, Jiang J Q, Xu Y, et al. Influence of AZ31 magnesium alloy sheet compressed along various paths on mechanical properties [J]. Chin. J. Nonferrous Met., 2016, 26: 2469
[9] (宋广胜, 姜敬前, 徐 勇等. AZ31镁合金板材变路径压缩对力学性能影响 [J]. 中国有色金属学报, 2016, 26: 2469)
[10] Hou D W, Liu T M, Luo L J, et al. Twinning behaviors of a rolled AZ31 magnesium alloy under multidirectional loading [J]. Mater. Charact., 2017, 124: 122
[11] Yang X Y, Miura H, Sakai T. Structural development at severely high strain in AZ31 magnesium alloy processed by cold forging and subsequent annealing [J]. Mater. Des., 2013, 44: 573
[12] Xia X S, Chen Q, Zhao Z D, et al. Microstructure, texture and mechanical properties of coarse-grained Mg-Gd-Y-Nd-Zr alloy processed by multidirectional forging [J]. J. Alloys Compd., 2015, 623: 62
[13] Jiang M G, Yan H, Chen R S. Twinning, recrystallization and texture development during multi-directional impact forging in an AZ61 Mg alloy [J]. J. Alloys Compd., 2015, 650: 399
[14] Ulacia I, Dudamell N V, Gálvez F, et al. Mechanical behavior and microstructural evolution of a Mg AZ31 sheet at dynamic strain rates [J]. Acta Mater., 2010, 58: 2988
[15] Chun Y B, Davies C H J. Twinning-induced negative strain rate sensitivity in wrought Mg alloy AZ31 [J]. Mater. Sci. Eng., 2011, A528: 5713
[16] Yang X Y, Sun Z Y, Zhang L. Preparation of submicro and nanosized magnesium alloys by multiply compressed deformation [J]. Acta Metall. Sin., 2010, 46: 607
[16] (杨续跃, 孙争艳, 张 雷. 室温多向多道次压缩变形制备亚微米和纳米级镁合金 [J]. 金属学报, 2010, 46: 607)
[17] Wang B S, Shi J J, Ye P, et al. In-situ investigation on nucleation and propagation of {101ˉ2} twins during uniaxial multi-pass compression in an extruded AZ31 Mg alloy [J]. Mater. Sci. Eng., 2018, A731: 71
[18] Li J Q, Liu J, Cui Z S. Microstructures and mechanical properties of AZ61 magnesium alloy after isothermal multidirectional forging with increasing strain rate [J]. Mater. Sci. Eng., 2015, A643: 32
[19] Wang L F, Huang G S, Quan Q, et al. The effect of twinning and detwinning on the mechanical property of AZ31 extruded magnesium alloy during strain-path changes [J]. Mater. Des., 2014, 63: 177
[20] Guo C F, Xin R L, Ding C H, et al. Understanding of variant selection and twin patterns in compressed Mg alloy sheets via combined analysis of Schmid factor and strain compatibility factor [J]. Mater. Sci. Eng., 2014, A609: 92
[21] Wang B S, Deng L P, Guo N, et al. EBSD analysis of {101ˉ2} twinning activity in Mg-3Al-1Zn alloy during compression [J]. Mater. Charact., 2014, 98: 180
[22] Xin R L, Liang Y C, Ding C H, et al. Geometrical compatibility factor analysis of paired extension twins in extruded Mg-3Al-1Zn alloys [J]. Mater. Des., 2015, 86: 656
[23] Xin Y C, Zhou X J, Wu Y, et al. Deformation behavior and mechanical properties of composite twin structures under different loading paths [J]. Mater. Sci. Eng., 2015, A640: 118
[24] Wang C, Ding H, Wang B S, et al. Effects of deformation texture and twins on the corrosion resistance of rolled AZ31 Mg alloy under 5% uniaxial compression [J]. Acta. Metall. Sin. (Engl. Lett.), 2017, 30: 921
[25] Park S H, Hong S G, Lee J H, et al. Texture evolution of rolled Mg-3Al-1Zn alloy undergoing a {101ˉ2} twinning dominant strain path change [J]. J. Alloys Compd., 2015, 646: 573
[1] 常松涛, 张芳, 沙玉辉, 左良. 偏析干预下体心立方金属再结晶织构竞争[J]. 金属学报, 2023, 59(8): 1065-1074.
[2] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[3] 邵晓宏, 彭珍珍, 靳千千, 马秀良. 镁合金LPSO/SFs结构间{101¯2}孪晶交汇机制的原子尺度研究[J]. 金属学报, 2023, 59(4): 556-566.
[4] 张哲峰, 李克强, 蔡拓, 李鹏, 张振军, 刘睿, 杨金波, 张鹏. 层错能对面心立方金属形变机制与力学性能的影响[J]. 金属学报, 2023, 59(4): 467-477.
[5] 沈朝, 王志鹏, 胡波, 李德江, 曾小勤, 丁文江. 镁合金抗高温氧化机理研究进展[J]. 金属学报, 2023, 59(3): 371-386.
[6] 朱云鹏, 覃嘉宇, 王金辉, 马鸿斌, 金培鹏, 李培杰. 机械球磨结合粉末冶金制备AZ61超细晶镁合金的组织与性能[J]. 金属学报, 2023, 59(2): 257-266.
[7] 唐伟能, 莫宁, 侯娟. 增材制造镁合金技术现状与研究进展[J]. 金属学报, 2023, 59(2): 205-225.
[8] 娄峰, 刘轲, 刘金学, 董含武, 李淑波, 杜文博. 轧制态Mg-xZn-0.5Er合金板材组织及室温成形性能[J]. 金属学报, 2023, 59(11): 1439-1447.
[9] 李小兵, 潜坤, 舒磊, 张孟殊, 张金虎, 陈波, 刘奎. W含量对Ti-42Al-5Mn-xW合金相转变行为的影响[J]. 金属学报, 2023, 59(10): 1401-1410.
[10] 彭立明, 邓庆琛, 吴玉娟, 付彭怀, 刘子翼, 武千业, 陈凯, 丁文江. 镁合金选区激光熔化增材制造技术研究现状与展望[J]. 金属学报, 2023, 59(1): 31-54.
[11] 周红伟, 高建兵, 沈加明, 赵伟, 白凤梅, 何宜柱. 高温低周疲劳下C-HRA-5奥氏体耐热钢中孪晶界演变[J]. 金属学报, 2022, 58(8): 1013-1023.
[12] 郑士建, 闫哲, 孔祥飞, 张瑞丰. 纳米金属层状材料强塑性的界面调控[J]. 金属学报, 2022, 58(6): 709-725.
[13] 陈扬, 毛萍莉, 刘正, 王志, 曹耕晟. 高速冲击载荷下预压缩AZ31镁合金的退孪生行为与动态力学性能[J]. 金属学报, 2022, 58(5): 660-672.
[14] 曾小勤, 王杰, 应韬, 丁文江. 镁及其合金导热研究进展[J]. 金属学报, 2022, 58(4): 400-411.
[15] 吴国华, 童鑫, 蒋锐, 丁文江. 铸造Mg-RE合金晶粒细化行为研究现状与展望[J]. 金属学报, 2022, 58(4): 385-399.