Please wait a minute...
金属学报  2019, Vol. 55 Issue (7): 902-910    DOI: 10.11900/0412.1961.2019.00034
  本期目录 | 过刊浏览 |
新型耐磨耐高温氧化NiCrAlSiC复合涂层的制备及性能研究
赵明雨1,甄会娟2,3(),董志宏2,杨秀英1(),彭晓4
1. 沈阳工学院 抚顺 113122
2. 中国科学院金属研究所 沈阳 110016
3. 中国科学技术大学材料科学与工程学院 沈阳 110016
4. 南昌航空大学材料科学与工程学院 南昌 330063
Preparation and Performance of a Novel Wear-Resistant and High Temperature Oxidation-Resistant NiCrAlSiC Composite Coating
Mingyu ZHAO1,Huijuan ZHEN2,3(),Zhihong DONG2,Xiuying YANG1(),Xiao PENG4
1. Shenyang Institute of Technology, Fushun 113122, China
2. Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
3. School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
4. School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063, China
引用本文:

赵明雨,甄会娟,董志宏,杨秀英,彭晓. 新型耐磨耐高温氧化NiCrAlSiC复合涂层的制备及性能研究[J]. 金属学报, 2019, 55(7): 902-910.
Mingyu ZHAO, Huijuan ZHEN, Zhihong DONG, Xiuying YANG, Xiao PENG. Preparation and Performance of a Novel Wear-Resistant and High Temperature Oxidation-Resistant NiCrAlSiC Composite Coating[J]. Acta Metall Sin, 2019, 55(7): 902-910.

全文: PDF(19875 KB)   HTML
摘要: 

采用“电泳+电沉积”两步法在金属基体上先预沉积CrAlSiC电泳层,再电沉积Ni,制备了NiCrAlSiC复合涂层,并制备不含SiC的NiCrAl涂层为对比样品。采用XRD、SEM、EPMA和TEM对复合涂层进行形貌、结构和成分表征,并研究其高温氧化性能和摩擦磨损性能。结果表明:复合涂层致密并与基体结合良好,涂层内颗粒分散均匀。与不含SiC的NiCrAl复合涂层相比,NiCrAlSiC复合涂层的氧化膜由NiO、NiAl2O4和Al2O3三层结构转变为NiAl2O4和Al2O3两层结构,且氧化膜更薄;同时,涂层硬度提高26%,磨损速率下降52%,磨损机制由磨粒磨损转变为黏着磨损。SiC颗粒的加入同时提高了NiCrAl涂层的抗高温氧化性能和耐磨性能。

关键词 NiCrAl复合涂层高温氧化摩擦磨损电泳电沉积    
Abstract

MCrAl (M=Ni, Co, or their combinations) coatings have been widely used as high temperature oxidation protection coatings on turbine blades, as they can thermally grow stable, dense and well adherent Al2O3 protective scales. Due to the particulate nature of the exhaust, MCrAl coatings often fail owing to severe high-temperature wear. To improve the anti-wear resistance of the MCrAl coatings, NiCrAlSiC composite coatings were designed and fabricated by the combination of electrophoretic deposition (EPD) and electrodeposition (ED). The compositions, morphologies and structures of the as-deposited composite coatings were characterized by XRD, SEM, EPMA and TEM. A Ni7.4Cr6.2Al14.3SiC (mass fraction, %) coating, as well as a contrast SiC-free Ni7.2Cr6.2Al coating, was prepared. No cracks or micro pores were found either at the coating/substrate interface or in the coating, and elements distributed uniformly in the coating. Compared to the SiC-free coating, oxide scale on the NiCrAlSiC coating transformed from a three-layered structure (NiO, NiAl2O4 and Al2O3) to a thinner two-layered structure (NiAl2O4 and Al2O3), showing better high temperature oxidation resistance. And microhardness of the NiCrAlSiC coating increased 26%, together with the wear rate reduced 52%. Wear mechanism of the NiCrAl coating was abrasive wear, while that of the NiCrAlSiC coating switched to adhesive wear. These results indicate that the addition of SiC improves both high temperature oxidation resistance and wear resistance of the NiCrAl composite coating obviously.

Key wordsNiCrAl composite coating    high temperature oxidation    friction and wear    electrophoretic deposition    electrodeposition
收稿日期: 2019-02-02     
ZTFLH:  TG174.4  
基金资助:辽宁省自然科学基金项目No.20170540666
作者简介: 赵明雨,女,1987年生,副教授,硕士
图1  “电泳+电沉积”(EPD+ED)制备NiCrAlSiC复合涂层示意图
图2  NiCrAl和NiCrAlSiC复合涂层的XRD谱
图3  EPD+ED制备涂层的表面形貌
图4  EPD+ED制备涂层的纵截面形貌
图5  NiCrAlSiC涂层横截面EPMA分析结果
图6  NiCrAl/Ni基体界面附近TEM明场像
图7  涂层在空气中900 ℃氧化20 h氧化膜的表面形貌
图8  涂层在空气中900 ℃氧化20 h氧化膜的截面形貌

Layer

NiCrAlNiCrAlSiC
OAlCrNiOAlCrNiSi
151.019.17.022.954.626.54.013.91.0
259.214.65.420.848.811.11.338.80.0
349.86.81.442.0
表1  图8中NiCrAl和NiCrAlSiC涂层氧化膜的成分
图9  涂层摩擦系数随时间变化曲线
图10  NiCrAl和NiCrAlSiC涂层的磨痕表面形貌
[1] Brandl W, Grabke H J, Toma D, et al. The oxidation behaviour of sprayed MCrAlY coatings [J]. Surf. Coat. Technol., 1996, 86-87: 41
[2] Wang H Y, Zuo D W, Chen G, et al. Hot corrosion behaviour of low Al NiCoCrAlY cladded coatings reinforced by nano-particles on a Ni-base super alloy [J]. Corros. Sci., 2010, 52: 3561
[3] Feng M, Chen M H, Yu Z D, et al. Comparative study of thermal shock behavior of the arc ion plating NiCrAlY and the enamel based composite coatings [J]. Acta Metall. Sin., 2017, 53: 1636
[3] (丰 敏, 陈明辉, 余中狄等. 多弧离子镀NiCrAlY涂层与搪瓷基复合涂层的抗热震行为对比研究 [J]. 金属学报, 2017, 53: 1636)
[4] Peng X, Jiang S M, Sun X D, et al. Cyclic oxidation and hot corrosion behaviors of a gradient NiCoCrAlYSi coating [J]. Acta Metall. Sin., 2016, 52: 625
[4] (彭 新, 姜肃猛, 孙旭东等. 梯度NiCoCrAlYSi涂层的循环氧化及热腐蚀行为 [J]. 金属学报, 2016, 52: 625)
[5] Huang P K, Yeh J W, Shun T T, et al. Multi-principal-element alloys with improved oxidation and wear resistance for thermal spray coating [J]. Adv. Eng. Mater., 2004, 6: 74
[6] Hou G L, An Y L, Zhao X Q, et al. Effect of alumina dispersion on oxidation behavior as well as friction and wear behavior of HVOF-sprayed CoCrAlYTaCSi coating at elevated temperature up to 1000 ℃ [J]. Acta Mater., 2015, 95: 164
[7] Zhao L D, Parco M, Lugscheider E. Wear behaviour of Al2O3 dispersion strengthened MCrAlY coating [J]. Surf. Coat. Technol., 2004, 184: 298
[8] Bobzin K, Schl?fer T, Richardt K, et al. Development of oxide dispersion strengthened MCrAlY coatings [J]. J. Therm. Spray Technol., 2008, 17: 853
[9] Xie Y J, Yang Y H, Wang M S, et al. MCrAlY/TaC metal matrix composite coatings produced by electrospark deposition [J]. Acta Metall. Sin. (Engl. Lett.), 2013, 26: 173
[10] Bolelli G, Candeli A, Lusvarghi L, et al. Tribology of NiCrAlY+Al2O3 composite coatings by plasma spraying with hybrid feeding of dry powder+suspension [J]. Wear, 2015, 344-345: 69
[11] Bolelli G, Candeli A, Lusvarghi L, et al. "Hybrid" plasma spraying of NiCrAlY+Al2O3+h-BN composite coatings for sliding wear applications [J]. Wear, 2017, 378-379: 68
[12] Wang D S, Tian Z J, Wang S L, et al. Microstructure and wear resistance of laser cladding nano-Al2O3/MCrAlY composite graded coating on TiAl alloy [J]. Appl. Mech. Mater., 2012, 217-219: 1350
[13] Wang H Y, Zuo D W, Li X F, et al. Effects of nano-Al2O3p on high temperature frictional wear behaviors of NiCoCrAIY cladded coatings [J]. Adv. Mater. Res., 2012, 426: 40
[14] Richer P, Yandouzi M, Beauvais L, et al. Oxidation behaviour of CoNiCrAlY bond coats produced by plasma, HVOF and cold gas dynamic spraying [J]. Surf. Coat. Technol., 2010, 204: 3962
[15] Di Ferdinando M, Fossati A, Lavacchi A, et al. Isothermal oxidation resistance comparison between air plasma sprayed, vacuum plasma sprayed and high velocity oxygen fuel sprayed CoNiCrAlY bond coats [J]. Surf. Coat. Technol., 2010, 204: 2499
[16] Wang D S, Tian Z J, Shen L D, et al. Research status of MCrAlY coatings prepared by laser cladding [J]. Mater. Mech. Eng., 2013, 37(12): 1
[16] (王东生, 田宗军, 沈理达等. 激光熔覆MCrAlY涂层的研究现状 [J]. 机械工程材料, 2013, 37(12): 1)
[17] Foster J, Cameron B P, Carew J A. The production of multi-component alloy coatings by particle codeposition [J]. Trans. IMF, 1985, 63: 115
[18] Honey F J, Kedward E C, Wride V. The development of electrodeposits for high-temperature oxidation/corrosion resistance [J]. J. Vac. Sci. Technol., 1986, 4A: 2593
[19] Yang X, Peng X, Xu C, et al. Electrochemical assembly of Ni-xCr-yAl nanocomposites with excellent high-temperature oxidation resistance [J]. J. Electrochem. Soc., 2009, 156: C167
[20] Lin Z P, Huang X M, Shu X, et al. Effect of surfactants on Ni-SiC composite plating [J]. Met. Funct. Mater., 2008, 15(5): 20
[20] (林志平, 黄新民, 舒 霞等. 表面活性剂对Ni-SiC复合电镀的影响 [J]. 金属功能材料, 2008, 15(5): 20)
[21] Kim S K, Yoo H J. Formation of bilayer Ni-SiC composite coatings by electrodeposition [J]. Surf. Coat. Technol., 1998, 108-109: 564
[22] Li M L, Zhou R F, Ma C Y, et al. Effect of process parameters on SiC particle content in Ni-SiC nanocoatings [J]. J. Funct. Mater., 2017, 48: 189
[22] (李孟龙, 周瑞芬, 马春阳等. 工艺参数对Ni-SiC纳米镀层SiC粒子复合量的影响 [J]. 功能材料, 2017, 48: 189)
[23] Yang X Y, Peng X, Wang F H. Preparation and characterization of novel electrodeposited Ni-Cr-Al composite coatings [J]. Mater. Rev., 2011, 25(suppl. 2): 177
[23] (杨秀英, 彭 晓, 王福会. Ni-Cr-Al纳米复合镀层的制备及结构表征 [J]. 材料导报, 2011, 25(增刊2): 177)
[24] Zhen H J, Peng X. A new approach to manufacture oxidation-resistant Ni-Cr-Al overlay coatings by electrodeposition [J]. Corros. Sci., 2019, 150: 121
[25] Zhen H J, Tian L X, Dong Z H, et al. Electrodeposition of NiCrAl(Y) coatings with high contents of Cr and Al and their oxidation resistance [J]. J. Aeronaut. Mater., 2018, 38(2): 52
[25] (甄会娟, 田礼熙, 董志宏等. 高(Cr, Al)含量NiCrAl(Y)涂层电沉积制备及抗高温氧化性能 [J]. 航空材料学报, 2018, 38(2): 52)
[26] Zhen H, Peng X. Oxidation-resistant CoCrAl coatings fabricated by electrodeposition in combination with electrophoretic deposition [J]. Surf. Coat. Technol., 2018, 352: 541
[27] Wagner C. Passivity and inhibition during the oxidation of metals at elevated temperatures [J]. Corros. Sci., 1965, 5: 751
[28] Li Q, Peng X, Zhang J Q, et al. Comparison of the oxidation of high-sulfur Ni-25Cr-5Al alloys in as-cast and as-sputtered states [J]. Corros. Sci., 2010, 52: 1213
[29] Peng X, Wang F H. High temperature of corrosion of nano-crystalline metallic materials [J]. Acta Metall. Sin., 2014, 50: 202
[29] (彭 晓, 王福会. 纳米晶金属材料的高温腐蚀行为 [J]. 金属学报, 2014, 50: 202)
[30] Guo B H, Li H L. Effect of Ni-SiC nano-composite coating on the friction and wear behavior of TA15 alloy [J]. Nonferrous Met. Eng., 2016, 6(6): 29
[30] (郭宝会, 李海龙. 纳米Ni-SiC复合涂层对TA15合金磨擦磨损性能的影响 [J]. 有色金属工程, 2016, 6(6): 29)
[31] Wu C F, Ma M X, Liu W J, et al. Study on wear resistance of laser caldding Fe-based composite coatings reinforced by in-situ multiple carbide particles [J]. Acta Metall. Sin., 2009, 45: 1013
[31] (吴朝锋, 马明星, 刘文今等. 激光原位制备复合碳化物颗粒增强铁基复合涂层及其耐磨性的研究 [J]. 金属学报, 2009, 45: 1013)
[32] Zhou Y B, Ding Y Z. Oxidation resistance of co-deposited Ni-SiC nanocomposite coating [J]. Trans. Nonferrous Met. Soc. China, 2007, 17: 925
[33] Fang Y L, Wang H M. Room-temperature sliding wear properties of laser melt deposited Cr13Ni5Si2/γ ternary metal silicide alloy [J]. Acta Metall. Sin., 2006, 42: 181
[33] (方艳丽, 王华明. 激光熔化沉积Cr13Ni5Si2/γ-Ni基合金的耐磨性能 [J]. 金属学报, 2006, 42: 181)
[1] 冯力, 王贵平, 马凯, 杨伟杰, 安国升, 李文生. 冷喷涂辅助感应重熔合成AlCo x CrFeNiCu高熵合金涂层的显微组织和性能[J]. 金属学报, 2023, 59(5): 703-712.
[2] 沈朝, 王志鹏, 胡波, 李德江, 曾小勤, 丁文江. 镁合金抗高温氧化机理研究进展[J]. 金属学报, 2023, 59(3): 371-386.
[3] 苗军伟, 王明亮, 张爱军, 卢一平, 王同敏, 李廷举. AlCr1.3TiNi2 共晶高熵合金的高温摩擦学性能及磨损机理[J]. 金属学报, 2023, 59(2): 267-276.
[4] 徐文国, 郝文江, 李应举, 赵庆彬, 卢炳聿, 郭和一, 刘天宇, 冯小辉, 杨院生. 微量AlTiInconel 690合金高温氧化行为的影响[J]. 金属学报, 2023, 59(12): 1547-1558.
[5] 丛鸿达, 王金龙, 王成, 宁珅, 高若恒, 杜瑶, 陈明辉, 朱圣龙, 王福会. 新型无机硅酸盐复合涂层制备及其在高温水蒸气环境的氧化行为[J]. 金属学报, 2022, 58(8): 1083-1092.
[6] 解磊鹏, 孙文瑶, 陈明辉, 王金龙, 王福会. 制备工艺对FGH4097高温合金微观组织与性能的影响[J]. 金属学报, 2022, 58(8): 992-1002.
[7] 杭弢, 薛琦, 李明. 无模板电沉积金属微纳米阵列材料研究进展[J]. 金属学报, 2022, 58(4): 486-502.
[8] 高运明, 何林, 秦庆伟, 李光强. 利用ZrO2 固体电解质研究Na3AlF6-SiO2 熔盐中的电沉积[J]. 金属学报, 2022, 58(10): 1292-1304.
[9] 王文权, 杜明, 张新戈, 耿铭章. H13钢表面电火花沉积WC-Ni基金属陶瓷涂层微观组织及摩擦磨损性能[J]. 金属学报, 2021, 57(8): 1048-1056.
[10] 杨亮, 吕皓天, 万春磊, 巩前明, 陈浩, 张弛, 杨志刚. 综述:活性元素作用机理——氧化物“钉扎”模型[J]. 金属学报, 2021, 57(2): 182-190.
[11] 赵万新, 周正, 黄杰, 杨延格, 杜开平, 贺定勇. FeCrNiMo激光熔覆层组织与摩擦磨损行为[J]. 金属学报, 2021, 57(10): 1291-1298.
[12] 高博文, 王美涵, 闫茂成, 赵洪涛, 魏英华, 雷浩. 2024铝合金表面PEDOT涂层的电化学制备及耐腐蚀性能[J]. 金属学报, 2020, 56(11): 1541-1550.
[13] 高博, 王磊, 宋秀, 刘杨, 杨舒宇, 千叶晶彦. 预氧化对Co-Al-W基高温合金高温氧化和热腐蚀行为的影响[J]. 金属学报, 2019, 55(10): 1273-1281.
[14] 白银, 刘正东, 谢建新, 包汉生, 陈正宗. 预氧化处理对G115钢高温蒸气氧化行为的影响[J]. 金属学报, 2018, 54(6): 895-904.
[15] 杨继兰, 蒋元凯, 顾剑锋, 郭正洪, 陈海龑. 奥氏体化温度对中碳淬火-配分钢干滑动摩擦磨损性能的影响[J]. 金属学报, 2018, 54(1): 21-30.