Please wait a minute...
金属学报  2019, Vol. 55 Issue (12): 1606-1614    DOI: 10.11900/0412.1961.2019.00033
  研究论文 本期目录 | 过刊浏览 |
合金元素对中温Sn-Ag-Cu焊料互连组织及剪切强度的影响
曹丽华1,陈胤伯1,2,史起源1,远杰1,2,刘志权1,2,3()
1. 中国科学院金属研究所 沈阳 110016
2. 中国科学技术大学材料科学与工程学院 沈阳 110016
3. 中国科学院深圳先进技术研究院 深圳 518055
Effects of Alloy Elements on the Interfacial Microstructure and Shear Strength of Sn-Ag-Cu Solder
CAO Lihua1,CHEN Yinbo1,2,SHI Qiyuan1,YUAN Jie1,2,LIU Zhiquan1,2,3()
1. Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2. School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
3. Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
引用本文:

曹丽华, 陈胤伯, 史起源, 远杰, 刘志权. 合金元素对中温Sn-Ag-Cu焊料互连组织及剪切强度的影响[J]. 金属学报, 2019, 55(12): 1606-1614.
CAO Lihua, CHEN Yinbo, SHI Qiyuan, YUAN Jie, LIU Zhiquan. Effects of Alloy Elements on the Interfacial Microstructure and Shear Strength of Sn-Ag-Cu Solder[J]. Acta Metall Sin, 2019, 55(12): 1606-1614.

全文: PDF(14066 KB)   HTML
摘要: 

针对SAC305和改良添加了Ni、Sb、Bi元素的2种焊料及其分别与NiSn、NiAu、NiPdAu 3种镀层器件钎焊形成的互连焊点,采用SEM、EDS、EPMA、TEM、DSC等方法研究了Ni、Au、Pd、Sb、Bi等添加元素对金属间化合物(IMC)种类及厚度、焊料第二相形貌及分布以及焊点剪切强度的影响。结果发现,受Ni元素界面耦合作用的影响,焊点器件侧和印刷电路板(PCB)侧生成的IMC均为(Cu, Ni)6Sn5化合物;焊料中Sb、Ni元素减缓IMC生长,因此同一镀层下改良焊料的界面IMC厚度小于SAC305的;镀层中Au元素降低IMC生长速率,而Pd元素促进IMC生长,因此同一焊料下NiPdAu镀层样品的界面IMC厚度最大,而NiAu镀层样品的界面IMC厚度最小;镀层中Au、Pd元素的加入,促进焊料中Ag3Sn相从弥散颗粒状分布转为网状分布,焊点强度得到提升;焊料中Ag、Cu元素的加入,增加弥散分布的(Cu, Ni)6Sn5和Ag3Sn体积分数,提高焊点剪切强度;焊料中添加Bi元素导致焊料熔点降低,但可析出Bi单质起到弥散强化作用;因此,添加了Ni、Sb、Bi元素的改良焊料的焊点剪切强度,均高于同等条件下SAC305焊点样品的剪切强度。

关键词 合金元素Sn-Ag-Cu焊料金属间化合物界面形貌剪切强度    
Abstract

The eutectic Sn-Ag-Cu (SAC) alloy is the most widely used solder alloy in consuming electronic devices owing to its good wettability and mechanical properties. However, the growth of automotive electronics working at a higher temperature than consuming electronics, requires more reliable solder alloy during microelectronic packaging, which can be achieved by elemental alloying. In this work, the modified Sn-Ag-Cu alloy with Ni, Sb and Bi addition was soldered on the surface of NiSn, NiAu and NiPdAu coating layer respectively, and the effects of elemental addition on the interfacial microstructure and shear strength were investigated systematically. It was found that compared to the commercial SAC305 solder joint, the modified Sn-Ag-Cu solder joint has a thinner interfacial IMC layer while a higher shear strength under the same reflowing conditions, although the formed IMC species are all (Cu, Ni)6Sn5 at both the chip side and the printed circuit board (PCB) sides. The addition of Ni, Sb and Au elements can reduce the IMC growth rate, while the addition of Pd increases the IMC growth. For the same solder alloy and reflowing process, the thickness of IMC layer on NiPdAu is the largest, while that on NiAu coating layer is the smallest. Au or Pd addition in the coating layer affects the distribution of Ag3Sn from dispersive particles to net-like morphology, resulting in an improvement of solder shear strength. The addition of Ag and Cu elements can increase the volume proportion of (Cu, Ni)6Sn5 and Ag3Sn in the solder alloy, hence to increase the shear strength of the solder joints. The solution and precipitation of Bi in the solder alloy can also contribute to the higher shear strength of the modified Sn-Ag-Cu solder joint, although its melting point is decreased to about 213 ℃. Therefore, the shear strength of modified solder alloy with Ni, Sb and Bi elements is higher than that of commercial SAC305.

Key wordsalloy element    Sn-Ag-Cu solder    intermetallic compound    interfacial morphology    shear strength
收稿日期: 2019-02-02     
ZTFLH:  TF777.1  
基金资助:国家重点研发计划项目(No.2017YFB0305700)
作者简介: 曹丽华,女,1966年生,副研究员
图1  S1~S3样品器件侧和印刷电路板(PCB)侧的截面SEM像
图2  S1~S3样品中Ag3Sn形貌的SEM像
图3  S2和M2样品截面SEM像
图4  S3样品的截面EPMA元素面扫描分布图
图5  S3样品器件侧IMC界面处的元素EDS线扫描分析
图6  M3样品的截面EPMA元素面扫描分析
图7  M3样品截面组织中Ag3Sn形貌的TEM像及SAED花样
图8  M3样品焊料中的Bi单质以及EDS分析
图9  焊膏M合金的DSC升温和降温曲线
[1] Katsuaki S, translated by Liu Z Q, Li M Y. Introduction to Lead-Free Soldering [M]. Beijing: Science Press, 2017: 3
[1] (Katsuaki S著,刘志权,李明雨译. 无铅软钎焊技术基础 [M]. 北京: 科学出版社, 2017: 3)
[2] Zeng K, Tu K N. Six cases of reliability study of Pb-free solder joints in electronic packaging technology [J]. Mater. Sci. Eng., 2002, R38: 55
[3] Li P, Han J, Wang Y, et al. Microstructure and intermetallic compounds in Sn-3Ag-3Bi-3In solder joints on Cu matrix [A]. 2017 18th International Conference on Electronic Packaging Technology (ICEPT) [C]. Harbin: IEEE, 2017: 655
[4] Ho C E, Yang S C, Kao C R. Interfacial reaction issues for lead-free electronic solders [J]. J. Mater. Sci. Mater. Electron., 2007, 18: 155
[5] Ma X, Qian Y Y, Yoshida F. Effect of La on the Cu-Sn intermetallic compound (IMC) growth and solder joint reliability [J]. J. Alloys Compd., 2002, 334: 224
[6] Harris P G, Chaggar K S. The role of intermetallic compounds in lead-free soldering [J]. Solder. Surf. Mount Technol., 1998, 10(3): 38
[7] Wu C M L, Yu D Q, Law C M T, et al. Properties of lead-free solder alloys with rare earth element additions [J]. Mater. Sci. Eng., 2004, R44: 1
[8] Krammer O, Hurtony T, á Hadarits. Investigating intermetallic layer growth in Innolot solder alloy [A]. 2017 40th International Spring Seminar on Electronics Technology [C]. Sofia: IEEE, 2017: 1
[9] Chowdhury M R, Ahmed S, Fahim A, et al. Mechanical characterization of doped SAC solder materials at high temperature [A]. 2016 15th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems [C]. Las Vegas: IEEE, 2016: 1202
[10] Blair H D, Pan T Y, Nicholson J M. Intermetallic compound growth on Ni, Au/Ni, and Pd/Ni substrates with Sn/Pb, Sn/Ag, and Sn solders [PWBs] [A]. 1998 48th Electronic Components and Technology Conference [C]. Seattle: IEEE, 1998: 259
[11] Gyenes A, Benke M, Teglas N, et al. Investigation of multi-component lead-free solders [J]. Arch. Metall. Mater., 2017, 62: 1071
[12] Geng J, Zhang H W, Mutuku F, et al. Novel solder alloy with wide service temperature capability for automotive applications [A]. 2017 18th International Conference on Electronic Packaging Technology [C]. Harbin: IEEE, 2017: 1700
[13] Ghosh G. Interfacial reaction between multicomponent lead-free solders and Ag, Cu, Ni and Pd substrates [J]. J. Electron. Mater., 2004, 33: 1080
[14] Laurila T, Hurtig J, Vuorinen V, et al. Effect of Ag, Fe, Au and Ni on the growth kinetics of Sn-Cu intermetallic compound layers [J]. Microelectron. Reliab., 2009, 49: 242
[15] Huang M L, Chen L D, Zhao Y. Effect of Cu-Ni cross-solder interaction on liquid-solid interfacial reaction in Cu/Sn/Ni solder joint [J]. Chin. J. Nonferrous Met., 2012, 23: 1073
[15] (黄明亮, 陈雷达, 赵 宇. Cu-Ni交互作用对Cu/Sn/Ni焊点液固界面反应的影响 [J]. 中国有色金属学报, 2012, 23: 1073)
[16] Roy A K, Chabra R P. Prediction of solute diffusion coefficients in liquid metals [J]. Metall. Trans., 1988, 19A: 273
[17] Laurila T, Vuorinen V, Paulasto-Kr?ckel M. Impurity and alloying effects on interfacial reaction layers in Pb-free soldering [J]. Mater. Sci. Eng., 2010, R68: 1
[18] Sharma G, Eichfeld C M, Mohney S E. Intermetallic growth between lead-free solders and palladium [J]. J. Electron. Mater., 2003, 32: 1209
[19] Hirose A, Fujii T, Imamura T, et al. Influence of interfacial reaction on reliability of QFP joints with Sn-Ag based Pb free solders [J]. Mater. Trans., 2001, 42: 794
[20] Cho M G, Kang S K, Seo S K, et al. Effects of under bump metallization and nickel alloying element on the undercooling behavior of Sn-based, Pb-free solders [J]. J. Mater. Res., 2009, 24: 534
[21] Huang Y C, Chen S W, Wu K S. Size and substrate effects upon undercooling of Pb-free solders [J]. J. Electron. Mater., 2010, 39: 109
[22] Zhou M B, Qin H B, Ma X, et al. Interfacial reaction and melting/solidifications characteristics between Sn and different metallization of Cu, Ag, Ni and Co [A]. Proceedings of the 11th International Conference on Electronic Packaging Technology and High Density Packaging [C]. Xi'an: IEEE, 2010: 202
[23] Gao L L, Xue S B, Zhang L, et al. Effect of alloying elements on properties and microstructures of SnAgCu solders [J]. Microelectron. Eng., 2010, 87: 2025
[24] Luo F. Effects of Bi, Sb on microstructures and propensity of Sn-Ag-Cu solder alloys [D]. Zhenjiang: Jiangsu University of Science and Technology, 2010
[24] (罗 飞. 微量Bi, Sb对Sn-3.5Ag-0.5Cu无铅钎料组织与性能的影响 [D]. 镇江: 江苏科技大学, 2010)
[25] Liu A A, Kim H K, Tu K N, et al. Spalling of Cu6Sn5 spheroids in the soldering reaction of eutectic SnPb on Cr/Cu/Au thin films [J]. J. Appl. Phys., 1996, 80: 2774
[26] Kim H K, Tu K N. Rate of consumption of Cu in soldering accompanied by ripening [J]. Appl. Phys. Lett., 1995, 67: 2002
[27] Shnawah D A, Sabri Mohd Faizul M, Badruddin I A, et al. Effect of Ag content and the minor alloying element Fe on the mechanical properties and microstructural stability of Sn-Ag-Cu solder alloy under high-temperature annealing [J]. J. Electron. Mater., 2013, 42: 470
[28] Pereira P D, Spinelli J E, Garcia A. Combined effects of Ag content and cooling rate on microstructure and mechanical behavior of Sn-Ag-Cu solders [J]. Mater. Des., 2013, 45: 377
[1] 张伟东, 崔宇, 刘莉, 王文泉, 刘叡, 李蕊, 王福会. 600℃ NaCl盐雾环境下GH4169合金的腐蚀行为[J]. 金属学报, 2023, 59(11): 1475-1486.
[2] 丁宗业, 胡侨丹, 卢温泉, 李建国. 基于同步辐射X射线成像液/固复层界面氢气泡的形核、生长演变与运动行为的原位研究[J]. 金属学报, 2022, 58(4): 567-580.
[3] 李亚敏, 张瑶瑶, 赵旺, 周生睿, 刘洪军. CuInconel 718合金Nb偏析影响机理的第一性原理研究[J]. 金属学报, 2022, 58(2): 241-249.
[4] 周丽君, 位松, 郭敬东, 孙方远, 王新伟, 唐大伟. 基于飞秒激光时域热反射法的微尺度Cu-Sn金属间化合物热导率研究[J]. 金属学报, 2022, 58(12): 1645-1654.
[5] 肖宏,许朋朋,祁梓宸,吴宗河,赵云鹏. 感应加热异温轧制制备钢/铝复合板[J]. 金属学报, 2020, 56(2): 231-239.
[6] 宫声凯, 尚勇, 张继, 郭喜平, 林均品, 赵希宏. 我国典型金属间化合物基高温结构材料的研究进展与应用[J]. 金属学报, 2019, 55(9): 1067-1076.
[7] 吉华,邓运来,徐红勇,郭伟强,邓建峰,范世通. 焊接线能量对5182-O/HC260YD+Z异种材料CMT搭接接头组织与性能的影响[J]. 金属学报, 2019, 55(3): 376-388.
[8] 陈丽群, 邱正琛, 于涛. Ru对NiAl[100](010)刃型位错电子结构的影响[J]. 金属学报, 2019, 55(2): 223-228.
[9] 何贤美, 童六牛, 高成, 王毅超. Nd含量对磁控溅射Si(111)/Cr/Nd-Co/Cr薄膜结构与磁性的影响[J]. 金属学报, 2019, 55(10): 1349-1358.
[10] 张敏, 慕二龙, 王晓伟, 韩挺, 罗海龙. TA1/Cu/X65复合板焊接接头微观组织及力学性能[J]. 金属学报, 2018, 54(7): 1068-1076.
[11] 康慧君, 李金玲, 王同敏, 郭景杰. 定向凝固Al-Mn-Be合金初生金属间化合物相生长行为及力学性能[J]. 金属学报, 2018, 54(5): 809-823.
[12] 刘佳琳, 王玉敏, 张国兴, 张旭, 杨丽娜, 杨青, 杨锐. SiC单纤维增强TC17复合材料横向拉伸性能研究[J]. 金属学报, 2018, 54(12): 1809-1817.
[13] 耿林, 吴昊, 崔喜平, 范国华. 基于箔材反应退火合成的TiAl基复合材料板材研究进展[J]. 金属学报, 2018, 54(11): 1625-1636.
[14] 于宣, 张志豪, 谢建新. 不同Ce含量Fe-6.5%Si合金的组织、有序结构和中温拉伸塑性[J]. 金属学报, 2017, 53(8): 927-936.
[15] 赵宁,邓建峰,钟毅,殷录桥. 热迁移下Ni/Sn-xCu/Ni微焊点钎焊界面金属间化合物的演变[J]. 金属学报, 2017, 53(7): 861-868.