Please wait a minute...
金属学报  2019, Vol. 55 Issue (6): 729-740    DOI: 10.11900/0412.1961.2019.00015
  本期目录 | 过刊浏览 |
Ti2AlNb异形粉末环件的轧制成形与性能研究
卢正冠1,2,吴杰1,徐磊1(),崔潇潇1,杨锐1
1. 中国科学院金属研究所 沈阳 110016
2. 中国科学技术大学材料科学与工程学院 沈阳 110016
Ring Rolling Forming and Properties of Ti2AlNb Special Shaped Ring Prepared by Powder Metallurgy
Zhengguan LU1,2,Jie WU1,Lei XU1(),Xiaoxiao CUI1,Rui YANG1
1. Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2. School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
全文: PDF(23413 KB)   HTML
摘要: 

采用预合金粉末热等静压工艺制备了名义成分为Ti-22Al-24.5Nb-0.5Mo (原子分数,%)的Ti2AlNb合金及大尺寸异形环坯(直径大于800 mm),采用热模拟压缩实验研究了Ti2AlNb粉末合金的热变形行为,并对异形粉末环坯进行了轧制实验,分析了轧制前后的组织性能变化。结果表明,Ti2AlNb粉末合金的热加工窗口宽且开裂倾向小,具有更均匀的化学成分和α2相分布,但其应力抖动更加明显。优选1035~1045 ℃为Ti2AlNb粉末异形环的变形温度区间,Ti2AlNb粉末异形环坯经两火轧制后,无损检测表明无任何裂纹产生。热变形促使Ti2AlNb粉末合金的O板条细化和α2相球化,热处理后,粉末制坯+环轧成形Ti2AlNb合金为近两相(B2+O)组织,合金的室、高温拉伸塑性显著提高。

关键词 Ti2AlNb粉末冶金热等静压环轧成形    
Abstract

Ti2AlNb alloy was considered as the candidate material to replace superalloys such as GH4169 in gas turbine engine applications due to higher strength-weight ratio at elevated temperatures. Powder metallurgy (PM) offers the potential for solving many of the problems associated with the large ingots, such as center-line porosity and chemical inhomogeneity. In order to study the feasibility of preparing Ti2AlNb special shaped ring with large size, PM + ring rolling combined process is considered as a potential method and discussed in this work. PM Ti2AlNb alloy and special shaped ring (D>800 mm) with a nominal composition of Ti-22Al-24.5Nb-0.5Mo (atomic fraction, %) were prepared from pre-alloyed powder using hot isostatic pressing (HIP). Hot compression tests of PM Ti2AlNb alloy and wrought alloy with the same chemical composition were conducted on Gleeble-3800 testing machine under 930~1050 ℃ and 0.001~1 s-1 conditions. Ring rolling was conducted on PM Ti2AlNb special shaped ring by horizontal rolling machine, and the microstructure evolution and properties performance of PM ring after rolling forming process were studied. The results show that the processing window for PM Ti2AlNb alloy is broader than that for wrought alloys, and wrought Ti2AlNb alloy is easier to crack at low temperature or relative high strain rate. PM Ti2AlNb alloy has more homogeneous chemical composition and uniform α2 phase distribution. Stress instability phenomenon of PM Ti2AlNb alloy is more obvious than that of wrought alloy which is related to phase transition of Ti2AlNb alloy. Optimized deformation temperature for PM Ti2AlNb special shaped ring was set as 1030~1045 ℃ with reference to the hot compression results. Ti2AlNb special shaped ring after two rolling steps has no any kinds of defects presented by X-ray testing, ultrasonic testing and fluorescence detection. O laths inside PM Ti2AlNb alloy become shorter and narrow, and α2 phase tends to be a coarser and spherical structure due to the hot deformation. After a typical heat treatment (980 ℃, 2 h, AC+830 ℃, 24 h, AC), nearly B2+O microstructure is obtained in Ti2AlNb special shaped ring. Compared with the undeformed alloy, tensile ductility at room temperature and 650 ℃ of Ti2AlNb ring after hot deformation improves due to the refined O phase structure.

Key wordsTi2AlNb    powder metallurgy    hot isostatic pressing    ring rolling forming
收稿日期: 2019-01-17      出版日期: 2019-03-21
ZTFLH:  TG337  
通讯作者: 徐磊     E-mail: lxu@imr.ac.cn
Corresponding author: Lei XU     E-mail: lxu@imr.ac.cn
作者简介: 卢正冠,男,1990年生,博士生

引用本文:

卢正冠,吴杰,徐磊,崔潇潇,杨锐. Ti2AlNb异形粉末环件的轧制成形与性能研究[J]. 金属学报, 2019, 55(6): 729-740.
Zhengguan LU,Jie WU,Lei XU,Xiaoxiao CUI,Rui YANG. Ring Rolling Forming and Properties of Ti2AlNb Special Shaped Ring Prepared by Powder Metallurgy. Acta Metall, 2019, 55(6): 729-740.

链接本文:

http://www.ams.org.cn/CN/10.11900/0412.1961.2019.00015      或      http://www.ams.org.cn/CN/Y2019/V55/I6/729

图1  Ti2AlNb预合金粉末的独立粒度分布
MaterialAlNbMoONHTi
Pre-alloyed powder10.342.00.890.0750.0110.0026Bal.
Special shaped ring billet10.942.00.850.0800.0190.0023Bal.
表1  Ti2AlNb预合金粉末及异形环坯的化学成分
图2  Ti2AlNb预合金粉末的典型形貌
图3  Ti2AlNb热变形样品显微组织的SEM像
图4  2种包套尺寸Ti2AlNb粉末合金的相对密度分布图
图5  Ti2AlNb异形粉末环坯显微组织的SEM像
MaterialTemperature / ℃σb / MPaσ0.2 / MPaδ5 / %Ψ / %
Ring billet2311049256.59.0
65078862313.511.0
Cylindrical billet2311589528.06.0
65080259512.022.0
表2  Ti2AlNb异形粉末环坯与圆柱包套在室温和650 ℃的拉伸性能
图6  热压缩实验用Ti2AlNb合金的显微组织
TemperatureTypeStrain rate / s-1
0.0010.010.11
930HIP143248363562
Wrought146288353603
980HIP60168212255
Wrought49172182222
1005HIP59141245310
Wrought54149251337
1030HIP4690102147
Wrought439595154
1050HIP3180160201
Wrought31103153223
表3  Ti2AlNb粉末合金与铸锭变形合金在不同变形条件下的峰值应力
图7  不同温度热压缩实验后Ti2AlNb样品形貌
图8  热压缩实验后Ti2AlNb显微组织的SEM像
图9  Ti2AlNb合金的显微CT图
图 10  Ti2AlNb合金的应变速率敏感因子(m)比较
图11  Ti2AlNb粉末环件的轧制图片
图 12  Ti2AlNb异形粉末环坯轧制前后显微组织的SEM像
ProcessTemperature / ℃σb / MPaσ0.2 / MPaδ5 / %Ψ / %
HIP+rolled23125910915.56.0
121710356.05.0
65095072210.58.0
95873711.018.0
HIP+rolled+HT2311399679.58.0
113797612.513.0
65084868710.515.0
84367813.023.0
表4  Ti2AlNb异形环的拉伸性能
图13  Ti2AlNb异形粉末环坯热处理前后的显微组织
图14  Ti2AlNb粉末合金的TEM像
[1] Banerjee D, Gogia A K, Nandi T K, et al. A new ordered orthorhombic phase in a Ti3Al-Nb alloy [J]. Acta Metall., 1988, 36: 871
doi: 10.1016/0001-6160(88)90141-1
[2] Germann L, Banerjee D, Guédou J Y, et al. Effect of composition on the mechanical properties of newly developed Ti2AlNb-based titanium aluminide [J]. Intermetallics, 2005, 13: 920
doi: 10.1016/j.intermet.2004.12.003
[3] Kumpfert J. Intermetallic alloys based on orthorhombic titanium aluminide [J]. Adv. Eng. Mater., 2001, 3: 851
doi: 10.1002/1527-2648(200111)3:11<851::AID-ADEM851>3.0.CO;2-G
[4] Shen J, Feng A H. Recent advances on microstructural controlling and hot forming of Ti2AlNb-based alloys [J]. Acta Metall. Sin., 2013, 49: 1286
doi: 10.3724/SP.J.1037.2013.00607
[4] (沈 军, 冯艾寒. Ti2AlNb基合金微观组织调制及热成形研究进展 [J]. 金属学报, 2013, 49: 1286)
doi: 10.3724/SP.J.1037.2013.00607
[5] Chen W, Li J W, Xu L, et al. Development of Ti2AlNb alloys: Opportunities and challenges [J]. Adv. Mater. Proc., 2014, 172: 23
[6] Emura S, Araoka A, Hagiwara M. B2 grain size refinement and its effect on room temperature tensile properties of a Ti-22Al-27Nb orthorhombic intermetallic alloy [J]. Scr. Mater., 2003, 48: 629
doi: 10.1016/S1359-6462(02)00462-1
[7] Tang F, Nakazawa S, Hagiwara M. The effect of quaternary additions on the microstructures and mechanical properties of orthorhombic Ti2AlNb-based alloys [J]. Mater. Sci. Eng., 2002, A329-331: 492
doi: 10.1016/S0921-5093(01)01626-4
[8] Wang Y. The study on alloying, hot deformation behaviors and mechanical properties of Ti2AlNb based alloys [D]. Shenyang: Institute of Metal Research, Chinese Academy of Sciences, 2012
[8] (王 永. Ti2AlNb基合金的合金化、热加工及力学性能研究 [D]. 沈阳: 中国科学院金属研究所, 2012)
[9] Du G, Cui L L, Lei Q, et al. Research and development of orthorhombic titanium aluminide [J]. Mater. China, 2018, 37: 68
doi: 10.7502/j.issn.1674-3962.2018.01.10
[9] (杜 刚, 崔林林, 雷 强等. O相合金Ti2AlNb的研究进展 [J]. 中国材料进展, 2018, 37: 68)
doi: 10.7502/j.issn.1674-3962.2018.01.10
[10] Yang R. Advances and challenges of TiAl base alloys [J]. Acta Metall. Sin., 2015, 51: 129
doi: 10.11900/0412.1961.2014.00396
[10] (杨 锐. 钛铝金属间化合物的进展与挑战 [J]. 金属学报, 2015, 51: 129)
doi: 10.11900/0412.1961.2014.00396
[11] Zhang J W, Li S Q, Liang X B, et al. Research and application of Ti3Al and Ti2AlNb based alloys [J]. Chin. J. Nonferrous Met., 2010, 20: 336
[11] (张建伟, 李世琼, 梁晓波等. Ti3Al和Ti2AlNb基合金的研究与应用 [J]. 中国有色金属学报, 2010, 20: 336)
[12] Tai Q A, Li Z H, Sun L Q, et al. Application and prospect of aeroengine plastic forming technology [J]. Aeronaut. Manuf. Technol., 2014, (7): 34
doi: 10.3969/j.issn.1671-833X.2014.07.002
[12] (邰清安, 李治华, 孙立群等. 航空发动机塑性成形技术的应用与展望 [J]. 航空制造技术, 2014, (7): 34)
doi: 10.3969/j.issn.1671-833X.2014.07.002
[13] Tian W, Zhong Y, Liang X B, et al. Relationship between forming process and microstructure-properties of Ti-22Al-25Nb alloy ring [J]. Trans. Mater. Heat Treat., 2014, 35(10): 49
[13] (田 伟, 钟 燕, 梁晓波等. Ti-22Al-25Nb合金环形件成形工艺与组织性能关系 [J]. 材料热处理学报, 2014, 35(10): 49)
[14] Boehlert C J. The phase evolution and microstructural stability of an orthorhombic Ti-23Al-27Nb alloy [J]. J. Phase Equilib., 1999, 20: 101
doi: 10.1007/s11669-999-0007-z
[15] Lasalmonie A. Intermetallics: Why is it so difficult to introduce them in gas turbine engines? [J]. Intermetallics, 2006, 14: 1123
doi: 10.1016/j.intermet.2006.01.064
[16] Jiao X Y, Kong B B, Tao W, et al. Effects of annealing on microstructure and deformation uniformity of Ti-22Al-24Nb-0.5Mo laser-welded joints [J]. Mater. Des., 2017, 130: 166
doi: 10.1016/j.matdes.2017.05.005
[17] Xu L, Guo R P, Wu J, et al. Progress in hot isostatic pressing technology of titanium alloy powder [J]. Acta Metall. Sin., 2018, 54: 1537
[17] (徐 磊, 郭瑞鹏, 吴 杰等. 钛合金粉末热等静压近净成形研究进展 [J]. 金属学报, 2018, 54: 1537)
[18] Samarov V, Seliverstov D, Froes F H. Fabrication of near-net-shape cost-effective titanium components by use of prealloyed powders and hot isostatic pressing [A]. Titanium Powder Metallurgy [C]. Oxford: Butterworth-Heinemann, 2015: 313
[19] Xu L, Guo R P, Bai C G, et al. Effect of hot isostatic pressing conditions and cooling rate on microstructure and properties of Ti-6Al-4V alloy from atomized powder [J]. J. Mater. Sci. Technol., 2014, 30: 1289
doi: 10.1016/j.jmst.2014.04.011
[20] Wu J, Xu L, Lu B, et al. Preparation of Ti2AlNb alloy by powder metallurgy and its rupture lifetime [J]. Chin. J. Mater.
doi: 10.11901/1005.3093.2013.992
[20] (吴 杰, 徐 磊, 卢 斌等. 粉末冶金Ti2AlNb合金的制备及持久寿命 [J]. 材料研究学报, 2014, 28: 387)
doi: 10.11901/1005.3093.2013.992
[21] Lu Z G, Wu J, Guo R P, et al. Hot deformation mechanism and ring rolling behavior of powder metallurgy Ti2AlNb intermetallics [J]. Acta Metall. Sin. (Engl. Lett.), 2017, 30: 621
doi: 10.1007/s40195-017-0583-6
[22] Qi C. GH4169-type disk parts forging method, involves baiting GH4169-type bar prepared by cast condition or powder metallurgy process into primary bar ingot, and adding bar ingot into box type heating furnace of specific degrees centigrade [P]. Chin Pat, CN102764837A, 2013
[23] Lu Z G, Wu J, Xu L, et al. Comparative study on hot workability of powder metallurgy Ti-22Al-24Nb-0.5Mo alloy [J]. Chin. J. Mater. Res., 2015, 29: 445
[23] (卢正冠, 吴 杰, 徐 磊等. 粉末Ti-22Al-24Nb-0.5Mo合金热变形能力的对比研究 [J]. 材料研究学报, 2015, 29: 445)
[24] Wang S G, Wang S C, Zhang L. Application of high resolution transmission X-ray tomography in material science [J]. Acta Metall. Sin., 2013, 49: 897
doi: 10.3724/SP.J.1037.2013.00107
[24] (王绍钢, 王苏程, 张 磊. 高分辨透射X射线三维成像在材料科学中的应用 [J]. 金属学报, 2013, 49: 897)
doi: 10.3724/SP.J.1037.2013.00107
[25] Qiu C L. Net-shape hot isostatic pressing of a nickel-based powder superalloy [D]. Birmingham: University of Birmingham, 2010
[26] Lang L H, Wang G, Huang X N, et al. Shielding effect of capsules and its impact on mechanical properties of P/M aluminium alloys fabricated by hot isostatic pressing [J]. Chin. J. Nonferrous Met., 2016, 26: 261
[26] (郎利辉, 王 刚, 黄西娜等. 包套在铝合金粉末热等静压成形中的屏蔽效应及其对性能的影响 [J]. 中国有色金属学报, 2016, 26: 261)
[27] Wu J, Guo R P, Xu L, et al. Effect of hot isostatic pressing loading route on microstructure and mechanical properties of powder metallurgy Ti2AlNb alloys [J]. J. Mater. Sci. Technol., 2017, 33: 172
[28] Ma X, Zeng W D, Xu B, et al. Characterization of the hot deformation behavior of a Ti-22Al-25Nb alloy using processing maps Based on the murty criterion [J]. Intermetallics, 2012, 20: 1
doi: 10.1016/j.intermet.2011.08.027
[29] Wu Y, Liu G, Liu Z Q, et al. Formability and microstructure of Ti22Al24.5Nb0.5Mo rolled sheet within hot gas bulging tests at constant equivalent strain rate [J]. Mater. Des., 2016, 108: 298
doi: 10.1016/j.matdes.2016.06.109
[30] Jia J B, Zhang K F, Liu L M, et al. Hot deformation behavior and processing map of a powder metallurgy Ti-22Al-25Nb alloy [J]. J. Alloys Compd., 2014, 600: 215
doi: 10.1016/j.jallcom.2014.02.116
[31] Yoshizawa M, Ohsawa H. Evaluation of strain-rate sensitivity in superplastic compressive deformation [J]. J. Mater. Process. Technol., 1997, 68: 206
doi: 10.1016/S0924-0136(96)00103-3
[1] 徐磊, 郭瑞鹏, 吴杰, 卢正冠, 杨锐. 钛合金粉末热等静压近净成形研究进展[J]. 金属学报, 2018, 54(11): 1537-1552.
[2] 潘宇, 路新, 刘程程, 孙健卓, 佟健博, 徐伟, 曲选辉. Sn对TiAl基合金烧结致密化与力学性能的影响[J]. 金属学报, 2018, 54(1): 93-99.
[3] 徐伟,路新,杜艳霞,孟庆宇,黎鸣,曲选辉. 粉末冶金制备Ti-Fe二元合金的耐腐蚀性能[J]. 金属学报, 2017, 53(1): 38-46.
[4] 吴杰,徐磊,卢正冠,崔玉友,杨锐. Ti-22Al-24Nb-0.5Mo粉末合金的制备及电子束焊接*[J]. 金属学报, 2016, 52(9): 1070-1078.
[5] 郭瑞鹏,徐磊,程文祥,雷家峰,杨锐. 热等静压参数对Ti-5Al-2.5Sn ELI粉末合金组织与力学性能的影响*[J]. 金属学报, 2016, 52(7): 842-850.
[6] 姚瑶,叶建水,董建新,姚志浩,张麦仓,国为民. DD407/FGH95合金热等静压扩散连接反应层元素互扩展规律: I.扩散连接模型的建[J]. 金属学报, 2013, 49(9): 1041-1050.
[7] 姚瑶,董建新,姚志浩,张麦仓, 国为民. DD407/FGH95合金热等静压扩散连接反应层元素互扩展规律:II. 模型验证及实验分析[J]. 金属学报, 2013, 49(9): 1051-1060.
[8] 李少强,陈志勇,王志宏,刘建荣,王清江,杨锐. 一种快速凝固粉末冶金高温钛合金微观组织特征研究[J]. 金属学报, 2013, 29(4): 464-474.
[9] 沈军,冯艾寒. Ti2AlNb基合金微观组织调制及热成形研究进展[J]. 金属学报, 2013, 49(11): 1286-1294.
[10] 马文斌,刘国权,胡本芙,贾成厂. 镍基粉末高温合金FGH96中原始粉末颗粒边界的形成机理[J]. 金属学报, 2013, 49(10): 1248-1254.
[11] 许世娇 肖伯律 刘振宇 王文广 马宗义. 高能球磨法制备的碳纳米管增强铝基复合材料的微观组织和力学性能[J]. 金属学报, 2012, 48(7): 882-888.
[12] 胡本芙 刘国权 吴凯 胡鹏辉. 新型镍基粉末冶金高温合金中γ'相扇形组织形成以及演化行为研究[J]. 金属学报, 2012, 48(7): 830-836.
[13] 吕铮,卢晨阳,张守辉,谢锐,刘春明. 纳米结构14Cr-ODS铁素体钢的制备与微观结构[J]. 金属学报, 2012, 48(6): 649-653.
[14] 李海庆,宫骏,孙超. NiCrAlY/Al--Al2O3/Ti2AlNb高温抗氧化和力学性能研究[J]. 金属学报, 2012, 48(5): 579-586.
[15] 张琪 王全兆 肖伯律 马宗义. 粉末冶金制备SiCp/2009Al复合材料的相组成和元素分布[J]. 金属学报, 2012, 48(2): 135-141.