Please wait a minute...
金属学报  2019, Vol. 55 Issue (8): 951-957    DOI: 10.11900/0412.1961.2019.00014
  本期目录 | 过刊浏览 |
C含量对Fe-Mn-Al-C低密度钢组织和性能的影响
陈兴品1(),李文佳1,任平1,曹文全2,刘庆1
1. 重庆大学材料科学与工程学院 重庆 400044
2. 钢铁研究总院特殊钢研究所 北京 100081
Effects of C Content on Microstructure and Properties ofFe-Mn-Al-C Low-Density Steels
Xingpin CHEN1(),Wenjia LI1,Ping REN1,Wenquan CAO2,Qing LIU1
1. College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
2. Special Steel Department of Central Iron & Steel Research Institute, Beijing 100081, China
引用本文:

陈兴品,李文佳,任平,曹文全,刘庆. C含量对Fe-Mn-Al-C低密度钢组织和性能的影响[J]. 金属学报, 2019, 55(8): 951-957.
Xingpin CHEN, Wenjia LI, Ping REN, Wenquan CAO, Qing LIU. Effects of C Content on Microstructure and Properties ofFe-Mn-Al-C Low-Density Steels[J]. Acta Metall Sin, 2019, 55(8): 951-957.

全文: PDF(12111 KB)   HTML
摘要: 

采用EBSD、TEM、XRD和万能试验机等对比研究了4种Fe-30Mn-10Al-xC (x=0.53、0.72、1.21、1.68,质量分数,%)低密度钢固溶处理后的微观组织与力学性能。结果表明,随着C含量的增加,奥氏体的体积分数逐渐增多,显微结构由铁素体/奥氏体双相组织逐渐演变为单相奥氏体组织,钢的强度不断增加,而延伸率则先增加后减小。统计分析表明,奥氏体的应变协调能力高于铁素体,双相钢随着奥氏体含量的增加,延展性明显增加,强度略微增加;而对于单相奥氏体钢,随着C含量的增加,屈服强度明显增加,延展性变差,加工硬化能力显著降低,这是由于钢中κ′碳化物的析出造成的。

关键词 低密度钢Fe-Mn-Al-C合金力学性能奥氏体铁素体    
Abstract

The lightweight Fe-Mn-Al-C steels (so-called low-density steels) have received great attentions as promising candidate for automobile structure applications due to their excellent combination of density reduction, mechanical properties and corrosion resistance. In previous studies, most examinations of the Fe-Mn-Al-C alloys focused on the deformation mechanisms and the relationship between the microstructure and mechanical properties. It is well known that chemical composition, especially C content, which enhances strength as the interstitial element and reduces the density of steels, plays an important role in the control of microstructure and performance. However, the influence of C element in the alloy with high Mn content is barely studied. In this work, the effects of C content on microstructure and mechanical properties of four Fe-30Mn-10Al-xC (x=0.53, 0.72, 1.21, 1.68, mass fraction, %) alloys were studied by EBSD, TEM, XRD and universal testing machine. The results show that with the increase of C content, the amount of austenite gradually increases and the ferrite/austenite dual-phase microstructure transforms into single phase austenite. In addition, the strength increases monotonously, while the elongation increases and then decreases ultimately with increasing C content. Statistical analysis reveals that the strain coordination capacity of austenite is higher than that of ferrite. Therefore, with the increase of austenite content, the ductility of the dual-phase steel remarkably increases, while the strength increases slightly. For single austenite steels, the yield strength increases but the elongation and work hardening ability decrease with increasing C content, which is related to the precipitation of κ′ carbides.

Key wordslow-density steel    Fe-Mn-Al-C alloy    mechanical property    austenite    ferrite
收稿日期: 2019-01-17     
ZTFLH:  TG142.1  
基金资助:国家自然科学基金项目((Nos.51871062 and 51421001));中央高校基本科研业务费专项资金项目(No.2018CDJDCL0019)
作者简介: 陈兴品,男,1970年生,教授,博士
图1  不同C含量实验用钢的EBSD图

C content

%

γ phase

%

α phase

%

Grain size

μm

0.5352.844.313.3
0.7272.326.011.3
1.2199.70.28.9
1.6899.70.19.5
表1  实验用钢的相含量与晶粒尺寸
图2  含C量为1.68%的实验用钢的TEM像及选区电子衍射花样
图3  不同C含量实验用钢的XRD谱

C content

%

2θ

(°)

Lattice parameter

nm

γαaγaα
0.5342.8644.290.3660.290
0.7242.7944.270.3660.290
1.2142.69-0.367-
1.6842.52-0.368-
表2  4种C含量实验用钢的XRD实验数据
图4  不同C含量实验用钢的拉伸曲线及力学性能
图5  含C量为0.53%的实验用钢中奥氏体与铁素体两相变形前后的EBSD图
图6  含C量为0.53%的钢变形前后单个晶粒真应变的分布图
[1] Ha M C, Koo J M, Lee J K, et al. Tensile deformation of a low density Fe-27Mn-12Al-0.8C duplex steel in association with ordered phases at ambient temperature [J]. Mater. Sci. Eng., 2013, A586: 276
[2] Welsch E, Ponge D, Haghighat S M H, et al. Strain hardening by dynamic slip band refinement in a high-Mn lightweight steel [J]. Acta Mater., 2016, 116: 188
[3] Gutierrez-Urrutia I, Raabe D. Multistage strain hardening through dislocation substructure and twinning in a high strength and ductile weight-reduced Fe-Mn-Al-C steel [J]. Acta Mater., 2012, 60: 5791
[4] Yao M J, Welsch E, Ponge D, et al. Strengthening and strain hardening mechanisms in a precipitation-hardened high-Mn lightweight steel [J]. Acta Mater., 2017, 140: 258
[5] Yanushkevich Z, Belyakov A, Kaibyshev R, et al. Effect of cold rolling on recrystallization and tensile behavior of a high-Mn steel [J]. Mater. Charact., 2016, 112: 180
[6] Chen X P, Xu Y P, Ren P, et al. Aging hardening response and β-Mn transformation behavior of high carbon high manganese austenitic low-density Fe-30Mn-10Al-2C steel [J]. Mater. Sci. Eng., 2017, A703: 167
[7] Scott C, Allain S, Faral M, et al. The development of a new Fe-Mn-C austenitic steel for automotive applications [J]. Rev. Met. Paris, 2006, 103: 293
[8] Choi K, Seo C H, Lee H, et al. Effect of aging on the microstructure and deformation behavior of austenite base lightweight Fe-28Mn-9Al-0.8C steel [J]. Scr. Mater., 2010, 63: 1028
[9] Ren P, Chen X P, Cao Z X, et al. Synergistic strengthening effect induced ultrahigh yield strength in lightweight Fe-30Mn-11Al-1.2C steel [J]. Mater. Sci. Eng., 2019, A752: 160
[10] Rana R. Low-density steels [J]. JOM, 2014, 66: 1730
[11] Kim Y G, Han J M, Lee J S. Composition and temperature dependence of tensile properties of austenitic Fe-Mn-Al-C alloys [J]. Mater. Sci. Eng., 1989, A114: 51
[12] Kalashnikov I, Shalkevich A, Acselrad O, et al. Chemical composition optimization for austenitic steels of the Fe-Mn-Al-C system [J]. J. Mater. Eng. Perform., 2000, 9: 597
[13] Hwang C N, Chao C Y, Liu T F. Grain boundary precipitation in an Fe-8.0Al-31.5Mn-1.05C alloy [J]. Scr. Metall. Mater., 1993, 28: 263
[14] Gutierrez-Urrutia I, Raabe D. High strength and ductile low density austenitic FeMnAlC steels: Simplex and alloys strengthened by nanoscale ordered carbides [J]. Mater. Sci. Technol., 2014, 30: 1099
[15] Chen S P, Rana R, Haldar A, et al. Current state of Fe-Mn-Al-C low density steels [J]. Prog. Mater. Sci., 2017, 89: 345
[16] Lin C L, Chao C G, Juang J Y, et al. Deformation mechanisms in ultrahigh-strength and high-ductility nanostructured FeMnAlC alloy [J]. J. Alloys Compd., 2014, 586: 616
[17] Sato K, Tagawa K, Inoue Y. Spinodal decomposition and mechanical properties of an austenitic Fe-30wt.%Mn-9wt.%Al-0.9wt.%C alloy [J]. Mater. Sci. Eng., 1989, A111: 45
[18] Chang K M, Chao C G, Liu T F. Excellent combination of strength and ductility in an Fe-9Al-28Mn-1.8C alloy [J]. Scr. Mater., 2010, 63: 162
[19] Chen P C, Chao C G, Liu T F. A novel high-strength, high-ductility and high-corrosion-resistance FeAlMnC low-density alloy [J]. Scr. Mater., 2013, 68: 380
[20] Wang C S, Hwang C N, Chao C G, et al. Phase transitions in an Fe-9Al-30Mn-2.0C alloy [J]. Scr. Mater., 2007, 57: 809
[21] Chu C M, Huang H, Kao P W, et al. Effect of alloying chemistry on the lattice constant of austenitic Fe-Mn-Al-C alloys [J]. Scr. Metall. Mater., 1994, 30: 505
[22] Seol J B, Jung J E, Jang Y W, et al. Influence of carbon content on the microstructure, martensitic transformation and mechanical properties in austenite/ε-martensite dual-phase Fe-Mn-C steels [J]. Acta Mater., 2013, 61: 558
[23] Sutou Y, Kamiya N, Umino R, et al. High-strength Fe-20Mn-Al-C-based alloys with low density [J]. ISIJ Int., 2010, 50: 893
[24] Ding H, Han D, Zhang J, et al. Tensile deformation behavior analysis of low density Fe-18Mn-10Al-xC steels [J]. Mater. Sci. Eng., 2016, A652: 69
[25] Wu X L, Yang M X, Yuan F P, et al. Heterogeneous lamella structure unites ultrafine-grain strength with coarse-grain ductility [J]. Proc. Natl. Acad. Sci. USA, 2015, 112: 14501
[26] Fan Z, Tsakiropoulos P, Miodownik A P. A generalized law of mixtures [J]. J. Mater. Sci., 1994, 29: 141
[27] Hwang S W, Ji J H, Lee E G, et al. Tensile deformation of a duplex Fe-20Mn-9Al-0.6C steel having the reduced specific weight [J]. Mater. Sci. Eng., 2011, A528: 5196
[1] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[3] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[4] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[5] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[6] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[7] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[8] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[9] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[10] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[11] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[12] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[13] 王滨, 牛梦超, 王威, 姜涛, 栾军华, 杨柯. Cu马氏体时效不锈钢的组织与强韧性[J]. 金属学报, 2023, 59(5): 636-646.
[14] 赵亚峰, 刘苏杰, 陈云, 马会, 马广财, 郭翼. 铁素体-贝氏体双相钢韧性断裂过程中的夹杂物临界尺寸及孔洞生长[J]. 金属学报, 2023, 59(5): 611-622.
[15] 李述军, 侯文韬, 郝玉琳, 杨锐. 3D打印医用钛合金多孔材料力学性能研究进展[J]. 金属学报, 2023, 59(4): 478-488.