Please wait a minute...
金属学报  2019, Vol. 55 Issue (8): 1058-1066    DOI: 10.11900/0412.1961.2018.00567
  本期目录 | 过刊浏览 |
尺寸因素对2D轴对称模型计算不锈钢管焊接残余应力精度的影响
戴培元,胡兴,逯世杰,王义峰(),邓德安
重庆大学材料科学与工程学院 重庆 400045
Influence of Size Factor on Calculation Accuracy of Welding Residual Stress of Stainless Steel Pipe by 2D Axisymmetric Model
Peiyuan DAI,Xing HU,Shijie LU,Yifeng WANG(),Dean DENG
College of Materials Science and Engineering, Chongqing University, Chongqing 400045, China
引用本文:

戴培元,胡兴,逯世杰,王义峰,邓德安. 尺寸因素对2D轴对称模型计算不锈钢管焊接残余应力精度的影响[J]. 金属学报, 2019, 55(8): 1058-1066.
Peiyuan DAI, Xing HU, Shijie LU, Yifeng WANG, Dean DENG. Influence of Size Factor on Calculation Accuracy of Welding Residual Stress of Stainless Steel Pipe by 2D Axisymmetric Model[J]. Acta Metall Sin, 2019, 55(8): 1058-1066.

全文: PDF(7704 KB)   HTML
摘要: 

采用数值模拟和实验相结合的方法研究了尺寸因素对2D轴对称模型计算SUS316不锈钢管焊接残余应力精度的影响。基于通用有限元软件MSC. Marc,分别采用2D轴对称模型和3D模型计算了不同尺寸圆管对接接头的温度场和焊接残余应力分布,并将小尺寸管残余应力计算结果与实验测量结果进行了比较。结果表明,2D轴对称模型与3D模型计算结果整体吻合较好,但在靠近内表面的焊缝及近焊缝区域,焊接残余应力的幅值和拉压应力区域的大小存在一定差别,且差别随圆管尺寸的增加而增大。对于实际的工程应用,在不考虑始终端应力问题时,可以用2D轴对称模型代替3D模型计算环焊缝稳定区残余应力,从而节省大量计算时间。

关键词 残余应力数值模拟二维模型管道焊接    
Abstract

Austenitic stainless steel, owing to its good mechanical properties and excellent corrosion resistance, is widely used in petroleum, chemical, nuclear power and other fields. Welding is an extremely important manufacturing method in industrial production. When the thermal elastic-plastic finite element method (TEP-FEM) is used to simulate welding residual stress, especially in thick welded joints, a long calculation time is generally needed. Therefore, it has become an urgent problem to develop an efficient and high-precision computational approach to simulate welding residual stress. In this work, numerical simulation and experimental methods were combined to explore the effect of size on the calculation precision of welding residual stress of SUS316 stainless steel by the 2D axisymmetric model, in order to clarify the applicability of 2D axisymmetric model in the prediction of welding residual stress in pipe butt joints. This research can provide theoretical support for the development of computational methods suitable for engineering applications. Based on the finite element software MSC. Marc, the temperature field and welding residual stress distribution of three different sizes of pipes were calculated by 2D axisymmetric model and 3D model. The calculated residual stress distributions in the thin pipe model are compared with the experimental measurements. The results show that calculated residual stress by the 2D axisymmetric model agrees well with the 3D model. However, in the weld seam near the inner surface and the areas near the weld seam, a deviation on the residual stress distribution between in the 2D axisymmetric model and in the 3D model was observed, which is significant as the pipe size increases. For practical engineering applications, with the regardless of the stress problems at the beginning and end positions, the 2D axisymmetric model can be used instead of the 3D model to calculate the residual stress of the girth weld, which is very beneficial to calculation time saving.

Key wordsresidual stress    numerical simulation    2D model    pipe welding
收稿日期: 2018-12-27     
ZTFLH:  TG404  
基金资助:国家自然科学基金项目((No.51875063));中央高校基本科研业务费项目((No.2018CDXYCL0018));以及重庆市研究生科研创新项目((No.CYB18003))
作者简介: 戴培元,男,1995年生,硕士生
图1  坡口尺寸和焊道布置示意图
图2  残余应力测量位置和焊接方向示意图
图3  3种不同尺寸圆管的2D和3D有限元模型
CaseModeld / mmt / mmd/tM
A3D114.38.613.342200
B2D422
C3D348.526.213.3139200
D2D870
E3D665.050.013.3226240
F2D808
表1  3种不同尺寸圆管的2D和3D有限元计算案例
图4  材料热物理性能参数和力学性能参数
图5  不同尺寸圆管最后一道焊的热循环曲线
图6  内表面和外表面轴向残余应力的模拟结果与测量值[19]对比
图7  内表面和外表面周向残余应力模拟结果与测量值[19]对比
图8  3D模型180°截面和2D轴对称模型的周向残余应力分布对比
图9  3D模型180°截面和2D轴对称模型的轴向残余应力分布对比
图10  周向和轴向残余应力沿焊缝中心线的分布对比
[1] Deng P, Peng Q J, Han E H, et al. Effect of irradiation on corrosion of 304 nuclear grade stainless steel in simulated PWR primary water [J]. Corros. Sci., 2017, 127: 91
[2] Soria S R, Tolley A, Yawny A. A study of debris and wear damage resulting from fretting of Incoloy 800 steam generator tubes against AISI type 304 stainless steel [J]. Wear, 2016, 368-369: 219
[3] Terachi T, Yamada T, Miyamoto T, et al. SCC growth behaviors of austenitic stainless steels in simulated PWR primary water [J]. J. Nucl. Mater., 2012, 426: 59
[4] Nakagawa K, Nono M, Kimura A. Effect of dissolved hydrogen on the SCC susceptibility of SUS316L stainless steel [J]. Mater. Sci. Forum, 2010, 654-656: 2887
[5] Ma C, Peng Q J, Mei J N, et al. Microstructure and corrosion behavior of the heat affected zone of a stainless steel 308L-316L weld joint [J]. J. Mater. Sci. Technol., 2018, 34: 1823
[6] Hoffmeister H, Klein O. Modeling of SCC initiation and propagation mechanisms in BWR environments [J]. Nucl. Eng. Des., 2011, 241: 4893
[7] Singh J, Shahi A S. Weld joint design and thermal aging influence on the metallurgical, sensitization and pitting corrosion behavior of AISI 304L stainless steel welds [J]. J. Manuf. Processes, 2018, 33: 126
[8] Li G F, Congleton J. Stress corrosion cracking of a low alloy steel to stainless steel transition weld in PWR primary waters at 292 ℃ [J]. Corros. Sci., 2000, 42: 1005
[9] Deng D A, Murakawa H, Liang W. Numerical and experimental investigations on welding residual stress in multi-pass butt-welded austenitic stainless steel pipe [J]. Comput. Mater. Sci., 2008, 42: 234
[10] Ueda Y, Murakawa H, Ma N. Welding Deformation and Residual Stress Prevention [M]. Waltham: Elsevier, 2012: 1
[11] Murakawa H. Computational welding mechanics and its interface with industrial application [J]. Trans. JWRI, 2013, 25: 191
[12] Deng D A, Kiyoshima S. Influence of annealing temperature on calculation accuracy of welding residual stress in a sus304 stainless steel joint [J]. Acta Metall. Sin., 2014, 50: 626
[12] (邓德安, Kiyoshima S. 退火温度对SUS304不锈钢焊接残余应力计算精度的影响 [J]. 金属学报, 2014, 50: 626)
[13] Zhang J X, Liu C, Zhang J L. Efficient calculation technologies for welding stress and deformarion with nonlinear and gradient character [J]. Trans. China Weld. Inst., 2009, 30(6): 107
[13] (张建勋, 刘 川, 张林杰. 焊接非线性大梯度应力变形的高效计算技术 [J]. 焊接学报, 2009, 30(6): 107)
[14] Ueda Y, Yuan M G. A predicting method of welding residual stress using source of residual stress (Report II): Determination of standard inherent strain (mechanics, strength & structural design) [J]. Trans. JWRI, 1989, 18: 143
[15] Hong J K, Tsai C L, Dong P L. Assessment of numerical procedures for residual stress analysis of multipass welds [J]. Weld. J., 1998, 77: 372
[16] Jiang W, Yahiaoui K, Hall R, et al. Finite element simulation of multipass welding: Full three-dimensional versus generalized plane strain or axisymmetric models [J]. J. Strain Anal. Eng. Des., 2005, 40: 587
[17] Deng D A, Murakawa H. Numerical simulation of temperature field and residual stress in multi-pass welds in stainless steel pipe and comparison with experimental measurements [J]. Comput. Mater. Sci., 2006, 37: 269
[18] Totten G E, Howes M, Inoue T. Handbook of Residual Stress and Deformation of Steel [M]. Ohio: ASM International, 2002: 1
[19] Katsuyama J, Nakamura M, Tobita T, et al. Effects of shape of weld and welding conditions on residual stress at welded joints of stainless steel piping [A]. Preprints of the National Meeting of JWS [C]. Tokyo: Japan Welding Society, 2009: 37
[20] Sun J M, Liu X Z, Tong Y G, et al. A comparative study on welding temperature fields, residual stress distributions and deformations induced by laser beam welding and CO2 gas arc welding [J]. Mater. Des., 2014, 63: 519
[21] Deng D A, Ren S D, Li S, et al. Influence of multi-thermal cycle and constraint condition on residual stress in P92 steel weldment [J]. Acta Metall. Sin., 2017, 53: 1532
[21] (邓德安, 任森栋, 李 索等. 多重热循环和约束条件对P92钢焊接残余应力的影响 [J]. 金属学报, 2017, 53: 1532)
[22] Goldak J, Chakravarti A, Bibby M. A new finite element model for welding heat sources [J]. Metall. Trans., 1984, 15B: 299
[23] Deng D A, Zhang C H, Pu X W, et al. Influence of material model on prediction accuracy of welding residual stress in an austenitic stainless steel multi-pass butt-welded joint [J]. J. Mater. Eng. Perform., 2017, 26: 1494
[24] Deng D A, Kiyoshima S. FEM analysis of residual stress distribution near weld start/end location in thick plates [J]. Comput. Mater. Sci., 2011, 50: 2459
[25] Deng D A, Kiyoshima S, Ogawa K, et al. Predicting welding residual stresses in a dissimilar metal girth welded pipe using 3D finite element model with a simplified heat source [J]. Nucl. Eng. Des., 2011, 241: 46
[26] Li S, Ren S D, Zhang Y B, et al. Numerical investigation of formation mechanism of welding residual stress in P92 steel multi-pass joints [J]. J. Mater. Process. Technol., 2017, 244: 240
[27] Dong P. On the mechanics of residual stresses in girth welds [J]. J. Pressure Vessel Technol., 2007, 129: 345
[1] 毕中南, 秦海龙, 刘沛, 史松宜, 谢锦丽, 张继. 高温合金锻件残余应力量化表征及控制技术研究进展[J]. 金属学报, 2023, 59(9): 1144-1158.
[2] 杜金辉, 毕中南, 曲敬龙. 三联冶炼GH4169合金研究进展[J]. 金属学报, 2023, 59(9): 1159-1172.
[3] 李时磊, 李阳, 王友康, 王胜杰, 何伦华, 孙光爱, 肖体乔, 王沿东. 基于中子与同步辐射技术的工程材料/部件多尺度残余应力评价[J]. 金属学报, 2023, 59(8): 1001-1014.
[4] 王重阳, 韩世伟, 谢峰, 胡龙, 邓德安. 固态相变和软化效应对超高强钢焊接残余应力的影响[J]. 金属学报, 2023, 59(12): 1613-1623.
[5] 张开元, 董文超, 赵栋, 李世键, 陆善平. 固态相变对Fe-Co-Ni超高强度钢长臂梁构件焊接-淬火过程应力和变形的影响[J]. 金属学报, 2023, 59(12): 1633-1643.
[6] 周小宾, 赵占山, 汪万行, 徐建国, 岳强. 渣-金界面气泡夹带行为数值物理模拟[J]. 金属学报, 2023, 59(11): 1523-1532.
[7] 卢海飞, 吕继铭, 罗开玉, 鲁金忠. 激光热力交互增材制造Ti6Al4V合金的组织及力学性能[J]. 金属学报, 2023, 59(1): 125-135.
[8] 夏大海, 邓成满, 陈子光, 李天书, 胡文彬. 金属材料局部腐蚀损伤过程的近场动力学模拟:进展与挑战[J]. 金属学报, 2022, 58(9): 1093-1107.
[9] 吴进, 杨杰, 陈浩峰. 纳入残余应力时不同拘束下DMWJ的断裂行为[J]. 金属学报, 2022, 58(7): 956-964.
[10] 张新房, 向思奇, 易坤, 郭敬东. 脉冲电流调控金属固体中的残余应力[J]. 金属学报, 2022, 58(5): 581-598.
[11] 苏凯新, 张继旺, 张艳斌, 闫涛, 李行, 纪东东. 微弧氧化6082-T6铝合金的高周疲劳性能及残余应力松弛机理[J]. 金属学报, 2022, 58(3): 334-344.
[12] 骆文泽, 胡龙, 邓德安. SUS316不锈钢马鞍形管-管接头的残余应力数值模拟及高效计算方法开发[J]. 金属学报, 2022, 58(10): 1334-1348.
[13] 胡龙, 王义峰, 李索, 张超华, 邓德安. 基于SH-CCT图的Q345钢焊接接头组织与硬度预测方法研究[J]. 金属学报, 2021, 57(8): 1073-1086.
[14] 李子晗, 忻建文, 肖笑, 王欢, 华学明, 吴东升. 热导型等离子弧焊电弧物理特性和熔池动态行为[J]. 金属学报, 2021, 57(5): 693-702.
[15] 杨勇, 赫全锋. 高熵合金中的晶格畸变[J]. 金属学报, 2021, 57(4): 385-392.