Please wait a minute...
金属学报  2019, Vol. 55 Issue (5): 566-574    DOI: 10.11900/0412.1961.2018.00540
  本期目录 | 过刊浏览 |
热轧板退火工艺对19Cr2Mo1W铁素体不锈钢织构与成形性能的影响
刘后龙,马明玉,刘玲玲,魏亮亮,陈礼清()
1. 东北大学轧制技术及连轧自动化国家重点实验室 沈阳 110819
Effect of Hot Band Annealing Processes on Texture and Formability of 19Cr2Mo1W Ferritic Stainless Steel
Houlong LIU,Mingyu MA,Lingling LIU,Liangliang WEI,Liqing CHEN()
1. State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, China
引用本文:

刘后龙,马明玉,刘玲玲,魏亮亮,陈礼清. 热轧板退火工艺对19Cr2Mo1W铁素体不锈钢织构与成形性能的影响[J]. 金属学报, 2019, 55(5): 566-574.
Houlong LIU, Mingyu MA, Lingling LIU, Liangliang WEI, Liqing CHEN. Effect of Hot Band Annealing Processes on Texture and Formability of 19Cr2Mo1W Ferritic Stainless Steel[J]. Acta Metall Sin, 2019, 55(5): 566-574.

全文: PDF(13885 KB)   HTML
摘要: 

以一种含W和稀土Ce的444型耐热铁素体不锈钢19Cr2Mo1W为材料,利用XRD测试分析、EBSD取向成像技术、粗糙度测量和成形性测试等手段,研究了该铁素体不锈钢热轧板不同退火工艺对其冷轧退火板的微观组织、织构演变以及成形性能的影响。结果表明,尽管采用了不同退火温度的热轧板退火工艺,但是热轧退火板的织构特征在一定程度上均会遗传至冷轧板;热轧退火板中增强的{223}<11ˉ0>和{111}<01ˉ1>织构组分存在,有利于增加冷轧退火板中γ纤维织构的强度。冷轧板中{001}<11ˉ0>~{115}<11ˉ0>纤维织构组分越强,退火后γ纤维织构偏离理想程度越大;适当提高热轧板退火温度可以有效减弱冷轧板中有害的{001}<11ˉ0>~{115}<11ˉ0>组分。提高热轧板退火温度,可以显著减轻甚至彻底消除热轧退火板中的带状组织、提高冷轧退火板的组织均匀性和γ纤维织构强度,有利于成形性能的提高。

关键词 铁素体不锈钢热轧板退火冷轧及退火织构成形性能    
Abstract

Low-cost ferritic stainless steels with excellent oxidation resistance and anti-corrosion ability are widely used in the fields of household appliances, hardware decoration, architectural structures, fuel cells and automobile exhaust systems. In order to achieve good formability of the ferritic stainless steel, the annealing process of hot-rolled sheet is crucial. As a newly developed 444-type heat-resistant ferritic stainless steel containing W and Ce, however, the influence of hot band annealing process of 19Cr2Mo1W ferritic stainless steel on its formability is not clear and need to have a deep understanding. In this work, the effect of annealing temperature of hot band on the microstructure, texture and formability of this steel was studied by means of XRD, EBSD, roughness measurement and formability test. The results indicated that although annealing processes were carried out at different temperatures after hot rolling, the characteristic of texture in the hot-rolled and annealed sheet was inherited to the cold-rolled sheet to some extent. The increased intensities of {223}<11ˉ0> and {111}<01ˉ1> texture components in the hot-rolled and annealed sheet were beneficial to improvement of the γ-fiber texture in the cold-rolled and annealed sheet. The extent of deviation from γ-fiber texture in the cold-rolled and annealed sheet was increased with increasing the intensities of {001}<11ˉ0>~{115}<11ˉ0> texture components in the cold-rolled sheet. An increased annealing temperature of the hot-rolled sheet could effectively weaken the intensities of {001}<11ˉ0>~{115}<11ˉ0> texture components in the cold-rolled sheet. In addition, the banded microstructures in the hot-rolled and annealed sheet were significantly reduced by increasing annealing temperature of the hot-rolled sheet, which improved the microstructure uniformity and formability of the cold-rolled and annealed sheet.

Key wordsferritic stainless steel    hot band annealing    cold rolling and annealing    texture    formability
收稿日期: 2018-12-07     
ZTFLH:  TG142.71  
基金资助:国家自然科学基金委员会-中国宝武钢铁集团有限公司钢铁联合研究基金项目(U1660205)
作者简介: 刘后龙,男,1991年生,博士生
图1  恒φ2 =45° ODF截面图及其上的主要织构组分
图2  不同温度退火后的热轧板的中心层恒φ2=45° ODF截面图
图3  铁素体不锈钢热轧板不同温度退火后冷轧板的中心层织构恒φ2=45° ODF截面图
图4  铁素体不锈钢热轧板不同温度退火后冷轧退火板的中心层织构恒φ2=45° ODF截面图
图5  铁素体不锈钢热轧板不同温度退火后的晶体取向成像图
图6  铁素体不锈钢热轧板不同温度退火后的冷轧退火板的晶体取向成像图

Annealing temperature

rˉ

Δr

Ra

μm

Rt

μm

δ

%

n

σ0.2

MPa

σb

MPa

9501.270.351.7010.5126.30.20403627
10001.360.231.348.2427.90.21396613
10501.62-0.090.926.1729.50.21394610
11001.720.160.896.1430.30.20390600
表1  热轧板经不同退火工艺后冷轧退火板的成形性能与力学性能
图7  热轧板不同温度退火后的冷轧退火板表面粗糙度曲线
图8  热轧板不同温度退火后的冷轧退火板的拉伸应力-应变曲线
[1] WeiX, DongJ H, TongJ, et al. Influence of temperature on pitting corrosion resistance of Cr26Mo1 ultra pure high chromium ferrite stainless steel in 3.5% NaCl solution[J]. Acta Metall. Sin., 2012, 48: 502
[1] (魏 欣, 董俊华, 佟 健等. 温度对Cr26Mo1超纯高铬铁素体不锈钢在3.5%NaCl溶液中耐点蚀性能的影响 [J]. 金属学报, 2012, 48: 502)
[2] MalitckiiE, YagodzinskyyY, LehtoP, et al. Hydrogen effects on mechanical properties of 18%Cr ferritic stainless steel[J]. Mater. Sci. Eng., 2017, A700: 331
[3] GaoF, LiuZ Y, ZhangW N, et al. Textures and precipitates in a 17Cr% ferritic stainless steel[J]. Acta Metall. Sin., 2012, 48: 1166
[3] (高 飞, 刘振宇, 张维娜等. 17Cr%铁素体不锈钢中的第二相与织构 [J]. 金属学报, 2012, 48: 1166)
[4] LiuJ, LuoX H, HuX Q, et al. Effect of Ti and Nb micro-alloying on the microstructure of the ultra-purified 11%Cr ferrite stainless steels[J]. Acta Metall. Sin., 2011, 47: 688
[4] (刘 静, 罗兴宏, 胡小强等. Ti和Nb微合金化对超纯11%Cr铁素体不锈钢组织的影响 [J]. 金属学报, 2011, 47: 688)
[5] WeiL L, ChenL Q, MaM Y, et al. Oxidation behavior of ferritic stainless steels in simulated automotive exhaust gas containing 5 vol. % water vapor[J]. Mater. Chem. Phys., 2018, 205: 508
[6] WeiL L, ZhengJ H, ChenL Q, et al. High temperature oxidation behavior of ferritic stainless steel containing W and Ce[J]. Corros. Sci., 2018, 142: 79
[7] MaM Y, HeC L, ChenL Q, et al. Effect of W and Ce additions on the electrochemical corrosion behaviour of 444-type ferritic stainless steel[J]. Corros. Eng. Sci. Technol., 2018, 53: 199
[8] LiuH T, LiuZ Y, WangG D. Effect of annealing after hot rolling on formability of ultra-purified Cr17 steel[J]. Mater. Sci. Technol., 2011, 19(3): 19
[8] (刘海涛, 刘振宇, 王国栋. 热轧后退火对超纯Cr17钢成形性能的影响 [J]. 材料科学与工艺, 2011, 19(3): 19)
[9] MaX G, ZhaoJ W, DuW, et al. Effects of rolling processes on ridging generation of ferritic stainless steel[J]. Mater. Charact., 2018, 137: 201
[10] De AbreuH F G, BrunoA D S, TavaresS S M, et al. Effect of high temperature annealing on texture and microstructure on an AISI-444 ferritic stainless steel[J]. Mater. Charact., 2006, 57: 342
[11] HuhM Y, EnglerO. Effect of intermediate annealing on texture, formability and ridging of 17%Cr ferritic stainless steel sheet[J]. Mater. Sci. Eng., 2001, A308: 74
[12] HongS H, LeeD N. Recrystallization textures in cold-rolled Ti bearing IF steel sheet[J]. ISIJ Int., 2002, 42: 1278
[13] RayR K, JonasJ J, HookR E. Cold rolling and annealing textures in low carbon and extra low carbon steels[J]. Int. Mater. Rev., 1994, 39: 129
[14] CaiG J, LiC S, WangD G, et al. Investigation of annealing temperature on microstructure and texture of Fe-19Cr-2Mo-Nb-Ti ferritic stainless steel[J]. Mater. Charact., 2018, 141: 169
[15] ZhangC, ZhaoA M, DingR, et al. Effect of annealing temperature on formability of Cr17 ferritic stainless steel[J].Heat Treat. Metal., 2015, 40(4): 113
[15] (张 聪, 赵爱民, 丁 然等. 退火温度对Cr17铁素体不锈钢成形性能的影响 [J]. 金属热处理, 2015, 40(4): 113)
[16] GhoshP, ChromikR R, VasheghiB, et al. Effect of crystallographic texture on the bulk magnetic properties of non-oriented electrical steels[J]. J. Magn. Magn. Mater., 2014, 365: 14
[17] GaoF, LiuZ Y, LiuH T, et al. Texture evolution and formability under different hot rolling conditions in ultra purified 17%Cr ferritic stainless steels[J]. Mater. Charact., 2013, 75: 93
[18] InagakiH. Fundamental aspect of texture format ion in low carbon steel[J]. ISIJ Int., 1994, 34: 313
[19] DuW, JiangL Z, SunQ S, et al. Effect of hot band annealing processes on microstructure, texture and r-value of ferritic stainless steel[J]. J. Iron Steel Res. Int., 2010, 17: 58
[20] GaoF, LiuZ Y, LiuH T, et al. Evolution of through-thickness texture in ultra purified 17% Cr ferritic stainless steels[J]. J. Iron Steel Res. Int., 2013, 20: 31
[21] DanielD, JonasJ J. Measurement and prediction of plastic anisotropy in deep-drawing steels[J]. Metall. Mater. Trans., 1990, 21A: 331
[22] LiuH T, LiuZ Y, WangG D. Texture development and formability of strip cast 17% Cr ferritic stainless steel[J]. ISIJ Int., 2009, 49: 890
[23] DuW, Y, JiangL Z, SunQ S, et al. Microstructure, texture, and formability of Nb+Ti stabilized high purity ferritic stainless steel[J]. J. Iron Steel Res. Int., 2010, 17: 47
[24] ShinH J, AnJ K, ParkS H, et al. The effect of texture on ridging of ferritic stainless steel[J]. Acta Mater., 2003, 51: 4693
[25] MaX G, ZhaoJ W, DuW, et al. An analysis of ridging of ferritic stainless steel 430[J]. Mater. Sci. Eng., 2017, A685: 358
[1] 常松涛, 张芳, 沙玉辉, 左良. 偏析干预下体心立方金属再结晶织构竞争[J]. 金属学报, 2023, 59(8): 1065-1074.
[2] 娄峰, 刘轲, 刘金学, 董含武, 李淑波, 杜文博. 轧制态Mg-xZn-0.5Er合金板材组织及室温成形性能[J]. 金属学报, 2023, 59(11): 1439-1447.
[3] 姜伟宁, 武晓龙, 杨平, 顾新福, 解清阁. 热轧硅钢表层动态再结晶区形成规律及剪切织构特征[J]. 金属学报, 2022, 58(12): 1545-1556.
[4] 杨平, 王金华, 马丹丹, 庞树芳, 崔凤娥. 成分对真空脱锰法相变控制高硅电工钢{100}织构的影响[J]. 金属学报, 2022, 58(10): 1261-1270.
[5] 丁宁, 王云峰, 刘轲, 朱训明, 李淑波, 杜文博. 高应变速率多向锻造Mg-8Gd-1Er-0.5Zr合金的微观组织、织构及力学性能[J]. 金属学报, 2021, 57(8): 1000-1008.
[6] 颜孟奇, 陈立全, 杨平, 黄利军, 佟健博, 李焕峰, 郭鹏达. 热变形参数对TC18钛合金β相组织及织构演变规律的影响[J]. 金属学报, 2021, 57(7): 880-890.
[7] 左良, 李宗宾, 闫海乐, 杨波, 赵骧. 多晶Ni-Mn-X相变合金的织构化与功能行为[J]. 金属学报, 2021, 57(11): 1396-1415.
[8] 许占一, 沙玉辉, 张芳, 章华兵, 李国保, 储双杰, 左良. 取向硅钢二次再结晶过程中的取向选择行为[J]. 金属学报, 2020, 56(8): 1067-1074.
[9] 于雷,罗海文. 部分再结晶退火对无取向硅钢的磁性能与力学性能的影响[J]. 金属学报, 2020, 56(3): 291-300.
[10] 程超,陈志勇,秦绪山,刘建荣,王清江. TA32钛合金厚板的微观组织、织构与力学性能[J]. 金属学报, 2020, 56(2): 193-202.
[11] 杜子杰, 李文渊, 刘建荣, 锁红波, 王清江. CMT增材制造TC4-DT合金组织均匀性与力学性能一致性研究[J]. 金属学报, 2020, 56(12): 1667-1680.
[12] 邓丽萍,崔凯旋,汪炳叔,向红亮,李强. AZ31镁合金室温多道次压缩过程微观组织和织构演变的研究[J]. 金属学报, 2019, 55(8): 976-986.
[13] 李鑫,董月成,淡振华,常辉,方志刚,郭艳华. 等通道角挤压制备超细晶纯Ti的腐蚀性能研究[J]. 金属学报, 2019, 55(8): 967-975.
[14] 刘征,刘建荣,赵子博,王磊,王清江,杨锐. 电子束快速成形制备TC4合金的组织和拉伸性能分析[J]. 金属学报, 2019, 55(6): 692-700.
[15] 高钰璧, 丁雨田, 陈建军, 许佳玉, 马元俊, 张东. 挤压态GH3625合金冷变形过程中的组织和织构演变[J]. 金属学报, 2019, 55(4): 547-554.