Please wait a minute...
金属学报  2019, Vol. 55 Issue (5): 627-637    DOI: 10.11900/0412.1961.2018.00534
  本期目录 | 过刊浏览 |
Ag/Ti2AlC复合材料的电弧侵蚀及退化机理
丁健翔1,2,田无边2,汪丹丹2,张培根2,陈坚2,孙正明2()
1. 安徽工业大学材料科学与工程学院冶金减排与资源综合利用教育部重点实验室 马鞍山 243002
2. 东南大学材料科学与工程学院江苏省先进金属材料重点实验室 南京 211189
Arc Erosion and Degradation Mechanism ofAg/Ti2AlC Composite
Jianxiang DING1,2,Wubian TIAN2,Dandan WANG2,Peigen ZHANG2,Jian CHEN2,Zhengming SUN2()
1. Key Laboratory of Metallurgical Emission Reduction & Resources Recycling, Ministry of Education, School of Materials Science and Engineering, Anhui University of Technology, Ma’anshan 243002, China
2. Jiangsu Key Laboratory of Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing 211189, China
引用本文:

丁健翔,田无边,汪丹丹,张培根,陈坚,孙正明. Ag/Ti2AlC复合材料的电弧侵蚀及退化机理[J]. 金属学报, 2019, 55(5): 627-637.
Jianxiang DING, Wubian TIAN, Dandan WANG, Peigen ZHANG, Jian CHEN, Zhengming SUN. Arc Erosion and Degradation Mechanism ofAg/Ti2AlC Composite[J]. Acta Metall Sin, 2019, 55(5): 627-637.

全文: PDF(44932 KB)   HTML
摘要: 

通过动态电弧放电实验深入研究了Ag/10TAC触头材料的抗电弧侵蚀机理。不均匀的电弧侵蚀使Ag/10TAC触头表面产生未受侵蚀、过渡和侵蚀3个特征区域。Ag微结构和化学组成变化归因于Ag熔化、气化、吸收O2、Ag-O蒸气沉积和Ag-Al相互扩散。电弧侵蚀过程中Ti2AlC微结构演变和氧化行为归因于Ti2AlC的快速“分解-氧化”过程。触头表面的结构和功能变化导致了Ag/10TAC复合材料退化。

关键词 金属陶瓷复合材料电接触材料MAX微结构氧化电弧侵蚀机理    
Abstract

Ag-based contact is widely used in low-voltage switch (contactor, relay and breaker), which determines the safety and stability of the circuit. Toxic Ag/CdO goes against the development of environmentally friendly materials and will be excluded from future market. Ag/10%Ti2AlC (mass fraction, Ag/10TAC) composite shows excellent arc erosion resistance, and has the potential to replace Ag/CdO. Dynamic electric arc discharging experiment was performed on the Ag/10TAC contact surface to investigate its arc erosion mechanism. Inhomogeneous arc erosion generates three featured regions (unaffected, transitional, affected) on the contact surface. The various microstructure and chemical composition of Ag are attributed to the melting and vaporization of Ag, absorption of O2, deposition of Ag-O vapor, and interdiffusion of Ag-Al. The rapid "decomposition-oxidation" process of Ti2AlC accounts for the microstructure evolution and oxidation behavior of Ti2AlC during arc erosion. The changes of structure and function on the contact surface lead to the degradation of Ag/10TAC composite.

Key wordsmetal-ceramic composite    electrical contact material    MAX phase    microstructure    oxidation    electric arc erosion mechanism
收稿日期: 2018-11-23     
ZTFLH:  TG148  
基金资助:国家自然科学基金项目(51731004);国家自然科学基金项目(51671054);国家自然科学基金项目(51501038);中央高校基本科研业务费项目(2242018K40108);中央高校基本科研业务费项目(2242018K40109);江苏省自然科学基金项目(BK20181285)
作者简介: 丁健翔,男,1987年生,博士生
图1  电弧放电前Ag/10%Ti2AlC (Ag/10TAC)复合材料的SEM像和XRD谱
图2  不同放电次数下Ag/10TAC触头的OM像
图3  放电次数增加过程中Ag/10TAC触头的质量和面积损失
图4  不同放电次数下Ag/10TAC触头表面整体形貌演变及电弧作用在Ag/10TAC触头表面的示意图
图5  放电1次后Ag/10TAC触头表面未受侵蚀区域的SEM像
图6  放电1次后Ag/10TAC触头表面过渡区域微结构、元素组成和元素面分布
图7  放电1次后Ag/10TAC触头表面受侵蚀区域微结构和元素组成
图8  放电10次后Ag/10TAC触头表面受侵蚀区域微结构和元素组成
图9  放电100次后Ag/10TAC触头表面受侵蚀区域微结构
ElementPoint 1Point 2Point 3
Ag3.042.943.20
Ti28.9624.6822.75
Al8.046.565.86
C17.1023.6219.05
O42.8642.2049.14
Ti/Al3.603.763.88
O/Ti1.481.712.16
表1  图9b中黑色块体的EDS分析
图10  放电1000次后Ag/10TAC触头表面受侵蚀区域微结构及受影响区域表面XRD谱
图11  放电5610次后Ag/10TAC触头受侵蚀区域表面微结构
图12  Ag/10TAC复合材料电弧侵蚀和退化机理示意图
ElementPoint 1Point 2
Ag0.380.23
Ti27.1240.33
Al7.6219.58
C10.3727.24
O54.5112.62
Ti/Al3.562.06
O/Ti2.010.31
表3  图10e中侵蚀坑边缘和内部的EDS分析
ElementPoint 1Point 2Point 3
Ag0.390.230.11
Ti33.9032.1129.13
Al9.719.078.16
C3.122.402.88
O52.8856.1959.72
Ti/Al3.493.543.57
O/Ti1.561.752.05
表2  图10b中黑色块体的EDS分析
[1] SawaK, HasegawaM. Recent researches and new trends of electrical contacts[J]. IEICE Trans. Electron., 2000, 83: 1363
[2] DingJ X, SunZ M, ZhangP G, et al. Current research status and outlook of Ag-based contact materials[J].Mater. Rev., 2018, 32(1): 58
[2] (丁健翔, 孙正明, 张培根等. Ag基触头材料的研究现状与展望 [J]. 材料导报, 2018, 32(1): 58)
[3] PonsF, CherkaouiM, IlaliI, et al. Evolution of the AgCdO contact material surface microstructure with the number of arcs[J]. J. Electron. Mater., 2010, 39: 456
[4] ItoT, ManoK. Experimental study of contact arc discharge and contact welding phenomena[J]. IEEE Trans. Compon., Hybrids, Manuf. Technol., 1982, 5: 62
[5] NilssonO, HaunerF, JeannotD. Replacement of AgCdO by AgSnO2 in DC contactors[A]. Proceedings of the 50th IEEE Holm Conference on Electrical Contacts and the 22nd International Conference on Electrical Contacts Electrical Contacts, 2004 [C]. Seattle, WA, USA: IEEE, 2004: 70
[6] SchroderK H. Silver-metal oxides as contact materials[J]. IEEE Trans. Compon., Hybrids, Manuf. Technol., 1987, 10: 127
[7] SheaJ J. Erosion and resistance characteristics of AgW and AgC contacts[J]. IEEE Trans. Compon. Pack. Technol., 1999, 22: 331
[8] WuC P, YiD Q, LiJ, et al. Investigation on microstructure and performance of Ag/ZnO contact material[J]. J. Alloys Compd., 2008, 457: 565
[9] BarsoumM W. The MN+1AXN phases: A new class of solids: Thermodynamically stable nanolaminates[J]. Prog. Solid State Chem., 2000, 28: 201
[10] SunZ M. Progress in research and development on MAX phases: A family of layered ternary compounds[J]. Int. Mater. Rev., 2011, 56: 143
[11] DingJ, ZhangP, TianW B, et al. The effects of Sn content on the microstructure and the formation mechanism of Ti2SnC powder by pressureless synthesis[J]. J. Alloys Compd., 2017, 695: 2850
[12] HuangX C, FengY, QianG, et al. Influence of breakdown voltages on arc erosion of a Ti3AlC2 cathode in an air atmosphere[J]. Ceram. Int., 2017, 43: 10601
[13] HuangX C, FengY, QianG, et al. Erosion behavior of Ti3AlC2 cathode under atmosphere air arc[J]. J. Alloys Compd., 2017, 727: 419
[14] HuangX C, FengY, QianG, et al. Arc corrosion behavior of Cu-Ti3AlC2 composites in air atmosphere[J]. Sci. China Technol. Sci., 2018, 61: 551
[15] ZhangP, NgaiT L, DingZ, et al. Erosion craters on Ti3SiC2 anode[J]. Phys. Lett., 2014, 378A: 2417
[16] ZhangP, NgaiT L, XieH, et al. Erosion behaviour of a Ti3SiC2 cathode under low-current vacuum arc[J]. J. Phys., 2013, 46D: 395202
[17] ZhuJ Q, ErikssonA O, GhafoorN, et al. Microstructure evolution of Ti3SiC2 compound cathodes during reactive cathodic arc evaporation[J]. J.Vac. Sci. Technol., 2011, 29A: 031601
[18] ZhangP, NgaiT L, WangA D, et al. Arc erosion behavior of Cu-Ti3SiC2 cathode and anode[J]. Vacuum, 2017, 141: 235
[19] DingJ, TianW B, ZhangP, et al. Arc erosion behavior of Ag/Ti3AlC2 electrical contact materials[J]. J. Alloys Compd., 2018, 740: 669
[20] DingJ X, TianW B, ZhangP G, et al. Preparation and arc erosion properties of Ag/Ti2SnC composites under electric arc discharging[J]. J. Adv. Ceram., 2019, 8: 90
[21] WangD D, TianW B, MaA B, et al. Anisotropic properties of Ag/Ti3AlC2 electrical contact materials prepared by equal channel angular pressing[J]. J. Alloys Compd., 2019, 784: 431
[22] TakeuchiM, KubonoT. A spectroscopic detecting system for measuring the temperature distribution of silver breaking arc using a CCD color camera[J]. IEEE Trans. Instrum. Meas., 1999, 48: 678
[23] TallmanD J, AnasoriB, BarsoumM W. A critical review of the oxidation of Ti2AlC, Ti3AlC2 and Cr2AlC in air[J]. Mater. Res. Lett., 2013, 1: 115
[24] WangX H, ZhouY C. Oxidation behavior of Ti3AlC2 at 1000-1400 ℃ in air[J]. Corros. Sci., 2003, 45: 891
[25] XuJ J, GaoZ H, QianY H, et al. Ultra-high-temperature oxidation and thermal stability of Ti2AlC in air at 1600-1800 ℃[J]. Oxid. Met., 2016, 86: 327
[26] TzenovN V, BarsoumM W. Synthesis and characterization of Ti3AlC2[J]. J. Am. Ceram. Soc., 2000, 83: 825
[27] ZhangJ, LiuB, WangJ Y, et al. Low-temperature instability of Ti2SnC: A combined transmission electron microscopy, differential scanning calorimetry, and X-ray diffraction investigations[J]. J. Mater. Res., 2009, 24: 39
[28] DongH Y, YanC K, ChenS Q, et al. Solid-liquid reaction synthesis and thermalstability of Ti2SnC powders[J]. J. Mater. Chem., 2001, 11: 1402
[29] ZhouY C, DongH Y, WangX H. High-temperature oxidation behavior of a polycrystalline Ti2SnC ceramic[J]. Oxid. Met., 2004, 61: 365
[1] 司永礼, 薛金涛, 王幸福, 梁驹华, 史子木, 韩福生. Cr添加对孪生诱发塑性钢腐蚀行为的影响[J]. 金属学报, 2023, 59(7): 905-914.
[2] 黄鼎, 乔岩欣, 杨兰兰, 王金龙, 陈明辉, 朱圣龙, 王福会. 基体表面喷丸处理对纳米晶涂层循环氧化行为的影响[J]. 金属学报, 2023, 59(5): 668-678.
[3] 刘来娣, 丁彪, 任维丽, 钟云波, 王晖, 王秋良. DZ445镍基高温合金高温长时间氧化形成的多层膜结构[J]. 金属学报, 2023, 59(3): 387-398.
[4] 沈朝, 王志鹏, 胡波, 李德江, 曾小勤, 丁文江. 镁合金抗高温氧化机理研究进展[J]. 金属学报, 2023, 59(3): 371-386.
[5] 李昕, 江河, 姚志浩, 董建新. O原子对高温合金基体NiCoNiCr晶界作用的理论计算分析[J]. 金属学报, 2023, 59(2): 309-318.
[6] 徐文国, 郝文江, 李应举, 赵庆彬, 卢炳聿, 郭和一, 刘天宇, 冯小辉, 杨院生. 微量AlTiInconel 690合金高温氧化行为的影响[J]. 金属学报, 2023, 59(12): 1547-1558.
[7] 芮祥, 李艳芬, 张家榕, 王旗涛, 严伟, 单以银. 新型纳米复合强化9Cr-ODS钢的设计、组织与力学性能[J]. 金属学报, 2023, 59(12): 1590-1602.
[8] 胡敏, 周生玉, 国京元, 胡明昊, 李冲, 李会军, 王祖敏, 刘永长. 多相Ni3Al基高温合金微区氧化行为[J]. 金属学报, 2023, 59(10): 1346-1354.
[9] 金鑫焱, 储双杰, 彭俊, 胡广魁. 露点对连续退火0.2%C-1.5%Si-2.5%Mn高强钢选择性氧化及脱碳的影响[J]. 金属学报, 2023, 59(10): 1324-1334.
[10] 丛鸿达, 王金龙, 王成, 宁珅, 高若恒, 杜瑶, 陈明辉, 朱圣龙, 王福会. 新型无机硅酸盐复合涂层制备及其在高温水蒸气环境的氧化行为[J]. 金属学报, 2022, 58(8): 1083-1092.
[11] 刘志愿, 王永贵, 赵成玉, 杨婷, 夏爱林. p型方钴矿热电材料纳米-介观尺度微结构调控[J]. 金属学报, 2022, 58(8): 979-991.
[12] 解磊鹏, 孙文瑶, 陈明辉, 王金龙, 王福会. 制备工艺对FGH4097高温合金微观组织与性能的影响[J]. 金属学报, 2022, 58(8): 992-1002.
[13] 何兴群, 付华栋, 张洪涛, 方继恒, 谢明, 谢建新. 机器学习辅助高性能银合金电接触材料的快速发现[J]. 金属学报, 2022, 58(6): 816-826.
[14] 孙蓉蓉, 姚美意, 林晓冬, 张文怀, 仇云龙, 胡丽娟, 谢耀平, 杨健, 董建新, 成国光. 添加TiFe22Cr5Al3Mo合金在500℃过热蒸汽中腐蚀行为的影响[J]. 金属学报, 2022, 58(5): 610-622.
[15] 赵晓峰, 李玲, 张晗, 陆杰. 热障涂层高熵合金粘结层材料研究进展[J]. 金属学报, 2022, 58(4): 503-512.