Please wait a minute...
金属学报  2019, Vol. 55 Issue (3): 410-416    DOI: 10.11900/0412.1961.2018.00492
  本期目录 | 过刊浏览 |
磁场对含CaO铁氧化物还原的影响
金永丽1,2,于海2,张捷宇1,赵增武3()
1. 上海大学材料科学与工程学院 上海 200444
2. 内蒙古科技大学材料与冶金学院 包头 014010
3. 内蒙古科技大学内蒙古自治区白云鄂博矿多金属资源综合利用重点实验室 包头 014010
Effects of Magnetic Field on Reduction of CaOContaining Iron Oxides
Yongli JIN1,2,Hai YU2,Jieyu ZHANG1,Zengwu ZHAO3()
1. School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
2. School of Materials and Metallurgy, Inner Mongolia University of Science and Technology, Baotou 014010, China
3. Inner Mongolia Key Laboratory for Utilization of Bayan Obo Multi-Metallic Resources, Inner Mongolia University of Science and Technology, Baotou 014010, China
引用本文:

金永丽,于海,张捷宇,赵增武. 磁场对含CaO铁氧化物还原的影响[J]. 金属学报, 2019, 55(3): 410-416.
Yongli JIN, Hai YU, Jieyu ZHANG, Zengwu ZHAO. Effects of Magnetic Field on Reduction of CaOContaining Iron Oxides[J]. Acta Metall Sin, 2019, 55(3): 410-416.

全文: PDF(11025 KB)   HTML
摘要: 

以分析纯Fe2O3和Fe2O3掺杂2.5%CaO (质量分数) 2种体系为研究对象,在1073 K、75%CO+25%CO2 (体积分数)气氛中进行有磁和无磁条件下的等温还原实验,研究了磁场作用下CaO对铁氧化物还原的影响。结果表明:磁场加快了铁氧化物还原生成金属Fe的反应速率,反应过程中相组成未发生变化;磁场促进了Ca元素在Fe2O3+2.5%CaO体系内的扩散,还原样品呈疏松多孔状。通过热力学计算可知,磁场降低了Fe2O3还原和CaFe5O7相分解反应的Gibbs自由能,提高了反应平衡常数,使铁氧化物的还原和中间相CaFe5O7的分解反应更容易进行。

关键词 磁场直接还原Fe2O3CaO平衡常数    
Abstract

Iron ore direct reduction is an attractive alternative route for effective use of low-grade complex symbiotic iron ore resources as well as reducing CO2 emissions from steel making. In this process, solid iron ore pellets are converted to so-called direct reduced iron with a reduction gas such as CO and H2. However, the slow reduction rate of iron oxides at lower temperatures has restricted the productivity of direct reduced iron. We have been studying the use of a magnetic field to enhance the direct reduction process, and investigating the influences of the magnetic field on the reduction of iron oxides and morphology of direct reduced iron. Iron ores are rich in iron oxides and also contain other oxides. The presence of other oxides, for instance CaO, is likely to interact with iron oxides during reduction so as to enhance the reduction rate by varying the lattice structure of solid iron oxides and gas/solid mass transport. In the present work, the effects of magnetic field on the reduction of CaO-containing iron oxides were studied. Isothermal reduction of compact samples of pure Fe2O3 and 2.5%CaO (mass fraction) containing Fe2O3 was carried out at 1073 K under a reaction atmosphere 75%CO+25%CO2 (volume fraction). A constant magnetic field (B=1.02 T) was applied during reduction to compare with the reaction under a normal condition without a magnetic field applied. The results showed that the magnetic field accelerates the reaction rate of Fe2O3 reduction to metallic Fe, and there are no phase compositions change during reduction in a constant magnetic field. The magnetic field promotes the diffusion of Ca in Fe2O3+2.5%CaO, and the reduced sample obtained in a magnetic field appears loose and porous. Thermodynamic calculation indicated that the Gibbs free energy of Fe2O3 reduction and CaFe5O7 phase decomposition is decreased with an interaction of magnetic field, resulting in an increase of the reaction equilibrium constant thus making the reduction of Fe2O3 and decomposition of intermediate phase CaFe5O7 occur more readily.

Key wordsmagnetic field    direct reduction    Fe2O3    CaO    equilibrium constant
收稿日期: 2018-11-01     
ZTFLH:  TF01  
基金资助:国家自然科学基金项目(51464039);国家自然科学基金项目(51464040)
作者简介: 金永丽,女,1973年生,副教授
图1  磁场还原炉示意图
图2  纯Fe2O3和Fe2O3+2.5%CaO体系等温还原度曲线图
图3  磁场条件和常规条件下不同还原时间Fe2O3+2.5%CaO体系样品的XRD谱
PointFeOCa
1100.00--
283.8111.594.61
397.311.111.58
452.1116.7431.15
580.877.7411.39
683.9113.412.68
表1  图4中各点EDS分析结果
图4  磁场和常规条件下纯Fe2O3和Fe2O3+2.5%CaO体系在不同时间还原后样品的SEM像
图5  磁场条件下还原30 min后Fe2O3+2.5%CaO样品SEM像和面扫描
ProcessEquation (2)Equation (3)

Gibbs free energy

J·mol-1

K

Gibbs free energy

J·mol-1

K
NCΔG?= -3.0720×10431.299ΔG?= -3.4127×1059.4330×103
CMFΔGT= -3.1523×10434.243ΔGT= -8.4863×1051.3531×104
表2  还原过程中反应Gibbs自由能和平衡常数
[1] Zhang T A, Yang H, Wei S C, et al. Application of electromagnetic technology in metallurgy [J]. Mater. Rev., 2000, 14(10): 23
[1] 张廷安, 杨 欢, 魏世承等. 电磁技术在冶金中的应用 [J]. 材料导报, 2000, 14(10): 23
[2] Huang K M, Liu Y Q, Tang J X, et al. The non-heat effect of electromagnetic waves on chemical reaction and its application in the mechanism research of athermal biologic effect of electromagnetism [J]. J. Microwav., 1996, 12: 126
[2] 黄卡玛, 刘永清, 唐敬贤等. 电磁波对化学反应的非热作用及其在电磁生物非热效应机理研究中的意义 [J]. 微波学报, 1996, 12: 126
[3] Chelluri B. Dynamic magnetic consolidation (DMC) process for powder consolidation of advanced materials [J]. Mater. Manuf. Proc., 1994, 9: 1127
[4] Celluri B, Barber J P. Full-density, net-shape powder consolidation using dynamic magnetic pulse pressures [J]. JOM, 1999, 51(7): 36
[5] Yang S X, Huang J H. Application of magnetic field sintering in preparation of materials [J]. Mater. Rev., 2002, 16(2): 19
[5] 杨四新, 黄继华. 磁场烧结在材料制备中的应用 [J]. 材料导报, 2002, 16(2): 19
[6] Qiu T S, Xiong S H, Xia Q. Study on treating arsenic-bearing refractory gold ore by magnetic field-intensified cyanidation leaching [J]. Met. Mine, 2004, (12): 32
[6] 邱廷省, 熊淑华, 夏 青. 含砷难处理金矿的磁场强化氰化浸出试验研究 [J]. 金属矿山, 2004, (12): 32
[7] Li X C, Wang T X, Jiang X, et al. Effect of electromagnetic field on melting slag resistance of MgO-C refractories [J]. J. Chin. Ceram. Sci., 2011, 39: 452
[7] 李享成, 王堂玺, 姜 晓等. 电磁场对MgO-C耐火材料抗熔渣侵蚀性的影响 [J]. 硅酸盐学报, 2011, 39: 452
[8] Xiao K J, Chen J, Li Q L, et al. Intensified extraction of pectin from orange peel in an electromagnetis fiebl of super-high frequency [J]. Food Sci., 2001, 1(3): 50
[8] 肖凯军, 陈 健, 李巧玲等. 高频电磁场强化浸取果胶的研究 [J]. 食品科学, 2001, 1(3): 50
[9] Ludtka G M, Jaramillo R A, Kisner R A, et al. In situ evidence of enhanced transformation kinetics in a medium carbon steel due to a high magnetic field [J]. Scr. Mater., 2004, 51: 171
[10] Zhang Y D, Esling C, Lecomte J S, et al. Grain boundary characteristics and texture formation in a medium carb on steel during its austenitic decomposition in a high magnetic field [J]. Acta Mater., 2005, 53: 5213
[11] Chio J K, Ohtsuka H, Xu Y, et al. Effects of a strong magnetic field on the phase stability of plain carbon steels [J]. Scr. Mater., 2000, 43: 221
[12] Ohtsuka H. Effects of strong magnetic fields on bainitic transformation [J]. Curr. Opin. Solid State Mater. Sci., 2004, 8: 279
[13] Kim W H, Lee Y S, Suh I K, et al. Influence of CaO and SiO2 on the reducibility of wüstite using H2 and CO gas [J]. ISIJ Int., 2012, 52: 1463
[14] Shigematsu N, Iwai H. Effect of CaO added with SiO2 and/or Al2O3 on reduction rate of dense wustite by hydrogen [J]. ISIJ Int., 1989, 29: 486
[15] El-Geassy A A. Influence of doping with CaO and/or MgO on stepwise reduction of pure hematite compacts [J]. Ironmaking Steelmaking, 1999, 26: 41
[16] El-Geassy A A. Reduction of CaO and/or MgO-doped Fe2O3compacts with carbonmonoxide at 1173-1473 K [J]. ISIJ Int., 1996, 36: 1344
[17] El-Geassy A A. Stepwise reduction of CaO and/or MgO doped-Fe2O3 compacts to magnetite then subsequently to iron at 1173-1473 K [J]. ISIJ Int., 1997, 37: 844
[18] Zhao Z L, Tang H Q, Guo Z C. Effects of CaO on precipitation morphology of metallic iron in reduction of iron oxides under CO atmosphere [J]. J. Iron Steel Res. Int., 2013, 20: 16
[19] Zhao Z L. Particle surface structure evolution of CO reducing iron oxide process [D]. Beijing: Beijing University of Science and Technology, 2012
[19] 赵志龙. CO还原铁氧化物过程的颗粒表面结构演变 [D]. 北京: 北京科技大学, 2012
[20] Nakiboglu F, St John D H, Hayes P C. The gaseous reduction of solid calciowustites in CO/CO2 and H2/H2O gas mixtures [J]. Metall. Trans., 1986, 17B: 375
[21] Inami T, Suzuki K. Effects of SiO2 and Al2O3 on the lattice parameter and CO gas reduction of CaO-containing dense wustite [J]. ISIJ Int., 2003, 43: 314
[22] Khedr M H, Bahgat M, Nasr M I, et al. Effect of additives on the reduction behaviour and CO2 catalytic decomposition of nanocrystallite Fe2O3 [J]. Miner. Process. Extr. Metall., 2008, 117: 240
[23] Iguchi Y, Goto K, Hayashi S. Surface segregation of calcium oxide in wustite and its effects on the reduction [J]. Metall. Mater. Trans., 1994, 25B: 405
[24] Piotrowski K, Mondal K, Wiltowski T, et al. Topochemical approach of kinetics of the reduction of hematite to wüstite [J]. Chem. Eng. J., 2007, 131: 73
[25] Geva S, Farren M, St John D H, et al. The effects of impurity elements on the reduction of wustite and magnetite to iron in CO/CO2 and H2/H2O gas mixtures [J]. Metall. Trans., 1990, 21B: 743
[26] Guo B, Han H B, Chai F. Influence of magnetic field on microstructural and dynamic properties of sodium, magnesium and calcium ions [J]. Trans. Nonferrous Met. Soc. China, 2011, 21(Suppl. 2): S494
[27] Zhang J Y, Song B, Xing X R, et al. Metallurgical Physical Chemistry [M]. Beijing: Metallurgical Industry Press, 2004: 21
[27] 张家芸, 宋 波, 邢献然等. 冶金物理化学 [M]. 北京: 冶金工业出版社, 2004: 21
[28] Zhang S Y, Lu Q, Xue R H, et al. Fundamentals of Magnetic Materials [M]. Beijing: Science Press, 1988: 16
[28] 张世远, 路 权, 薛荣华等. 磁性材料基础 [M]. 北京: 科学出版社, 1988: 16
[1] 苏震奇, 张丛江, 袁笑坦, 胡兴金, 芦可可, 任维丽, 丁彪, 郑天祥, 沈喆, 钟云波, 王晖, 王秋良. 纵向静磁场下单晶高温合金定向凝固籽晶回熔界面杂晶的形成与演化[J]. 金属学报, 2023, 59(12): 1568-1580.
[2] 宋庆忠, 潜坤, 舒磊, 陈波, 马颖澈, 刘奎. 镍基高温合金K417G与氧化物耐火材料的界面反应[J]. 金属学报, 2022, 58(7): 868-882.
[3] 原家华, 张秋红, 王金亮, 王灵禺, 王晨充, 徐伟. 磁场与晶粒尺寸协同作用对马氏体形核及变体选择的影响[J]. 金属学报, 2022, 58(12): 1570-1580.
[4] 唐海燕, 刘锦文, 王凯民, 肖红, 李爱武, 张家泉. 连铸中间包加热技术及其冶金功能研究进展[J]. 金属学报, 2021, 57(10): 1229-1245.
[5] 栾晓圣, 梁志强, 赵文祥, 石贵红, 李宏伟, 刘心藜, 祝国荣, 王西彬. 45CrNiMoVA钢脉冲磁处理的强化机理[J]. 金属学报, 2021, 57(10): 1272-1280.
[6] 任忠鸣,雷作胜,李传军,玄伟东,钟云波,李喜. 电磁冶金技术研究新进展[J]. 金属学报, 2020, 56(4): 583-600.
[7] 许擎栋, 李克俭, 蔡志鹏, 吴瑶. 脉冲磁场对TC4钛合金微观结构的影响及其机理探究[J]. 金属学报, 2019, 55(4): 489-495.
[8] 张建锋,蓝青,郭瑞臻,乐启炽. 交流磁场对过共晶Al-Fe合金初生相的影响[J]. 金属学报, 2019, 55(11): 1388-1394.
[9] 陶然, 赵玉涛, 陈刚, 怯喜周. 电磁场下原位合成纳米ZrB2 np/AA6111复合材料组织与性能研究[J]. 金属学报, 2019, 55(1): 160-170.
[10] 张建锋, 蓝青, 乐启炽. 交流磁场致Al-Fe亚共晶合金熔体热电势变化的研究[J]. 金属学报, 2018, 54(7): 1042-1050.
[11] 帅三三, 林鑫, 肖武泉, 余建波, 王江, 任忠鸣. 横向静磁场对激光熔化增材制造Al-12%Si合金凝固组织的影响[J]. 金属学报, 2018, 54(6): 918-926.
[12] 侯渊, 任忠鸣, 王江, 张振强, 李霞. 纵向静磁场对定向凝固GCr15轴承钢柱状晶向等轴晶转变的影响[J]. 金属学报, 2018, 54(5): 801-808.
[13] 王强, 董蒙, 孙金妹, 刘铁, 苑轶. 强磁场下合金凝固过程控制及功能材料制备[J]. 金属学报, 2018, 54(5): 742-756.
[14] 龚永勇, 程书敏, 钟玉义, 张云虎, 翟启杰. 脉冲磁致振荡凝固技术[J]. 金属学报, 2018, 54(5): 757-765.
[15] 王强, 何明, 朱晓伟, 李显亮, 吴春雷, 董书琳, 刘铁. 电磁场技术在冶金领域应用的数值模拟研究进展[J]. 金属学报, 2018, 54(2): 228-246.